Suppr超能文献

氧化物途径机制在水氧化稳定性和标度关系方面的突破。

The breakthrough of oxide pathway mechanism in stability and scaling relationship for water oxidation.

作者信息

Yin Zhao-Hua, Liu Hong, Hu Jin-Song, Wang Jian-Jun

机构信息

State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China.

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China.

出版信息

Natl Sci Rev. 2024 Oct 15;11(11):nwae362. doi: 10.1093/nsr/nwae362. eCollection 2024 Nov.

Abstract

An in-depth understanding of electrocatalytic mechanisms is essential for advancing electrocatalysts for the oxygen evolution reaction (OER). The emerging oxide pathway mechanism (OPM) streamlines direct O-O radical coupling, circumventing the formation of oxygen vacancy defects featured in the lattice oxygen mechanism (LOM) and bypassing additional reaction intermediates (*OOH) inherent to the adsorbate evolution mechanism (AEM). With only *O and *OH as intermediates, OPM-driven electrocatalysts stand out for their ability to disrupt traditional scaling relationships while ensuring stability. This review compiles the latest significant advances in OPM-based electrocatalysis, detailing design principles, synthetic methods, and sophisticated techniques to identify active sites and pathways. We conclude with prospective challenges and opportunities for OPM-driven electrocatalysts, aiming to advance the field into a new era by overcoming traditional constraints.

摘要

深入理解电催化机制对于推动用于析氧反应(OER)的电催化剂至关重要。新兴的氧化物途径机制(OPM)简化了直接的O - O自由基耦合,避免了晶格氧机制(LOM)中出现的氧空位缺陷的形成,并绕过了吸附质演化机制(AEM)中固有的额外反应中间体(OOH)。仅以O和*OH作为中间体,OPM驱动的电催化剂因其能够打破传统的比例关系同时确保稳定性而脱颖而出。本综述汇编了基于OPM的电催化的最新重大进展,详细介绍了设计原则、合成方法以及用于识别活性位点和途径的复杂技术。我们最后讨论了OPM驱动的电催化剂面临的潜在挑战和机遇,旨在通过克服传统限制将该领域推进到一个新时代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da24/11587812/28421d3c4ac6/nwae362sch1.jpg

相似文献

1
The breakthrough of oxide pathway mechanism in stability and scaling relationship for water oxidation.
Natl Sci Rev. 2024 Oct 15;11(11):nwae362. doi: 10.1093/nsr/nwae362. eCollection 2024 Nov.
2
Advances in Oxygen Evolution Reaction Electrocatalysts via Direct Oxygen-Oxygen Radical Coupling Pathway.
Adv Mater. 2025 Mar;37(9):e2416362. doi: 10.1002/adma.202416362. Epub 2025 Jan 15.
3
Cation vacancy-induced lattice oxygen oxidation mechanism for ultra-stable OER electrocatalysis.
J Colloid Interface Sci. 2025 Aug 15;692:137532. doi: 10.1016/j.jcis.2025.137532. Epub 2025 Apr 7.
4
Competition between Lattice Oxygen and Adsorbate Evolving Mechanisms in Rutile Ru-Based Oxide for the Oxygen Evolution Reaction.
ACS Appl Mater Interfaces. 2023 Apr 26;15(16):20563-20570. doi: 10.1021/acsami.3c02086. Epub 2023 Apr 11.
5
A review on fundamentals for designing oxygen evolution electrocatalysts.
Chem Soc Rev. 2020 Apr 7;49(7):2196-2214. doi: 10.1039/c9cs00607a.
6
Regulation of Oxide Pathway Mechanism for Sustainable Acidic Water Oxidation.
J Am Chem Soc. 2024 Nov 20;146(46):32049-32058. doi: 10.1021/jacs.4c12942. Epub 2024 Nov 12.
8
O-O Radical Coupling in Ultrathin Reconstructed CoSe Nanosheets for Effective Oxygen Evolution and Zinc-Air Batteries.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419083. doi: 10.1002/anie.202419083. Epub 2024 Dec 4.
9
Oxygen Radical Coupling on Short-Range Ordered Ru Atom Arrays Enables Exceptional Activity and Stability for Acidic Water Oxidation.
J Am Chem Soc. 2024 May 15;146(19):12958-12968. doi: 10.1021/jacs.3c13248. Epub 2024 May 2.
10
Unlocking the Transition of Electrochemical Water Oxidation Mechanism Induced by Heteroatom Doping.
Angew Chem Int Ed Engl. 2023 Oct 2;62(40):e202309732. doi: 10.1002/anie.202309732. Epub 2023 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验