Yin Zhao-Hua, Liu Hong, Hu Jin-Song, Wang Jian-Jun
State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China.
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China.
Natl Sci Rev. 2024 Oct 15;11(11):nwae362. doi: 10.1093/nsr/nwae362. eCollection 2024 Nov.
An in-depth understanding of electrocatalytic mechanisms is essential for advancing electrocatalysts for the oxygen evolution reaction (OER). The emerging oxide pathway mechanism (OPM) streamlines direct O-O radical coupling, circumventing the formation of oxygen vacancy defects featured in the lattice oxygen mechanism (LOM) and bypassing additional reaction intermediates (*OOH) inherent to the adsorbate evolution mechanism (AEM). With only *O and *OH as intermediates, OPM-driven electrocatalysts stand out for their ability to disrupt traditional scaling relationships while ensuring stability. This review compiles the latest significant advances in OPM-based electrocatalysis, detailing design principles, synthetic methods, and sophisticated techniques to identify active sites and pathways. We conclude with prospective challenges and opportunities for OPM-driven electrocatalysts, aiming to advance the field into a new era by overcoming traditional constraints.
深入理解电催化机制对于推动用于析氧反应(OER)的电催化剂至关重要。新兴的氧化物途径机制(OPM)简化了直接的O - O自由基耦合,避免了晶格氧机制(LOM)中出现的氧空位缺陷的形成,并绕过了吸附质演化机制(AEM)中固有的额外反应中间体(OOH)。仅以O和*OH作为中间体,OPM驱动的电催化剂因其能够打破传统的比例关系同时确保稳定性而脱颖而出。本综述汇编了基于OPM的电催化的最新重大进展,详细介绍了设计原则、合成方法以及用于识别活性位点和途径的复杂技术。我们最后讨论了OPM驱动的电催化剂面临的潜在挑战和机遇,旨在通过克服传统限制将该领域推进到一个新时代。