González Asier, Pandey Muskan, Schlusser Niels, Rahaman Sayanur, Ataman Meric, Mittal Nitish, Schmidt Alexander, Becskei Attila, Zavolan Mihaela
Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
Sci Data. 2025 Aug 30;12(1):1520. doi: 10.1038/s41597-025-05861-5.
The limited correlation between mRNA and protein levels within cells highlighted the need to study mechanisms of translational control. To decipher the factors that determine the rates of individual steps in mRNA translation, machine learning approaches are currently applied to large libraries of synthetic constructs, whose properties are generally different from those of endogenous mRNAs. To fill this gap and thus enable the discovery of elements driving the translation of individual endogenous mRNAs, we here report steady-state and dynamic multi-omics data from human liver cancer cell lines, specifically (i) ribosome profiling data from unperturbed cells as well as following the block of translation initiation (ribosome run-off, to trace translation elongation), (ii) protein synthesis rates estimated by pulsed stable isotope labeled amino acids in cell culture (pSILAC), and (iii) mean ribosome load on individual mRNAs determined by mRNA sequencing of polysome fractions (polysome profiling). These data will enable improved predictions of mRNA sequence-dependent protein output, which is crucial for engineering protein expression and for the design of mRNA vaccines.
细胞内mRNA水平与蛋白质水平之间的有限相关性凸显了研究翻译控制机制的必要性。为了解析决定mRNA翻译各个步骤速率的因素,机器学习方法目前正应用于大型合成构建体文库,这些构建体的特性通常与内源性mRNA不同。为了填补这一空白,从而发现驱动单个内源性mRNA翻译的元件,我们在此报告来自人肝癌细胞系的稳态和动态多组学数据,具体包括:(i) 未受干扰细胞以及翻译起始受阻后(核糖体耗尽,以追踪翻译延伸)的核糖体谱数据,(ii) 通过细胞培养中脉冲稳定同位素标记氨基酸(pSILAC)估计的蛋白质合成速率,以及(iii) 通过多核糖体组分的mRNA测序确定的单个mRNA上的平均核糖体负载(多核糖体谱分析)。这些数据将有助于改进对mRNA序列依赖性蛋白质输出的预测,这对于工程化蛋白质表达和mRNA疫苗设计至关重要。