Thanos Dimitris-Foivos, Ntintas Orestis A, Athanasiadis Emmanouil I, Papaspyropoulos Angelos, Petty Russell, Gorgoulis Vassilis G
Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
Intelligencia, Inc., New York, NY, USA.
Cell Mol Life Sci. 2025 Aug 31;82(1):328. doi: 10.1007/s00018-025-05848-w.
Chromatin, the spatial organizer of genomic DNA, is hierarchically folded into higher-order structures to facilitate DNA compaction, enabling genome surveillance. Understanding the organization and function of the three-dimensional (3D) genome is critical to profile chromatin accessibility and functional interactions that govern gene regulation across multiple biological processes, including aging and one of its hallmarks, cellular senescence. Cellular senescence constitutes a defensive stress response to various intrinsic and extrinsic stimuli, preserving cellular and organismal homeostasis through a generally irreversible cell cycle arrest. In this review article we discuss epigenetic alterations occurring to DNA and chromatin that drive and fuel the onset of this complex phenomenon. As such, we describe major large-scale chromatin events, including the formation of higher-order chromatin structures and the 3D spatial alterations of the genome that occur during senescence. We also discuss global heterochromatin loss, deficiencies in nuclear lamins, the depletion of core histones and their modifications, as well as the epigenetic regulation of the senescence-associated secretory phenotype (SASP), all of which serve key roles in the epigenome of senescent cells. To clearly demonstrate the significance of epigenetic modifications, data from a computational meta-analysis are presented, aiming to further underpin key epigenetic mechanisms occurring in senescent cells. Last, we highlight promising epigenetic modulators implemented in therapeutic strategies for senescent cell detection and elimination, possibly leading to significant clinical advances against various age-related diseases as well as the delay and prevention of the aging onset.
染色质作为基因组DNA的空间组织者,会分层折叠成更高阶的结构以促进DNA压缩,从而实现基因组监测。了解三维(3D)基因组的组织和功能对于描绘染色质可及性以及调控多个生物过程(包括衰老及其特征之一——细胞衰老)中基因调控的功能相互作用至关重要。细胞衰老构成了对各种内在和外在刺激的防御性应激反应,通过普遍不可逆的细胞周期停滞来维持细胞和机体的稳态。在这篇综述文章中,我们讨论了DNA和染色质发生的表观遗传改变,这些改变驱动并助长了这一复杂现象的发生。因此,我们描述了主要的大规模染色质事件,包括高阶染色质结构的形成以及衰老过程中发生的基因组3D空间改变。我们还讨论了整体异染色质丢失、核纤层蛋白缺陷、核心组蛋白及其修饰的消耗,以及衰老相关分泌表型(SASP)的表观遗传调控,所有这些在衰老细胞的表观基因组中都起着关键作用。为了清楚地证明表观遗传修饰的重要性,我们展示了来自计算荟萃分析的数据,旨在进一步支持衰老细胞中发生的关键表观遗传机制。最后,我们强调了在衰老细胞检测和消除的治疗策略中实施的有前景的表观遗传调节剂,这可能会在对抗各种与年龄相关的疾病以及延缓和预防衰老方面取得重大临床进展。
Cell Mol Life Sci. 2025-8-31
Orphanet J Rare Dis. 2025-9-1
Encephale. 2017-8
Ageing Res Rev. 2024-8
NPJ Aging. 2025-2-4
iScience. 2024-11-28