Bao Shouyu, Yang Min, Liu Peng, Xu Zhihan, Huang Shixing, Yan Fuhua, Yang Wenjie
Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. No.197 Ruijin Er Road Shanghai, Shanghai CN200025, China.
CT Collaboration, Siemens Healthineers, Shanghai, China.
Eur J Radiol. 2025 Aug 25;192:112383. doi: 10.1016/j.ejrad.2025.112383.
Advances in computed tomography (CT) have enabled myocardial extracellular volume (ECV) quantification, but the optimal post-contrast timing for CT-derived ECV remains undefined. In this preclinical study using a swine model, we aimed to determine the optimal post-contrast acquisition time for photon-counting CT (PCCT)-derived ECV using cardiac magnetic resonance (CMR) as the reference standard.
Twenty-three CMR and PCCT scans were performed on infarcted swine, and nine scans on healthy controls. PCCT scans were acquired at 3-, 5-, 7-, 9-, 12-, and 15-minutes after contrast administration. Pearson correlation coefficients (r) and intraclass correlation coefficients (ICCs) were calculated between PCCT- and CMR-derived ECV across all myocardial segments, infarcted and normal myocardium. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of PCCT-ECV in differentiating LGE-positive from LGE-negative myocardial segments. Subgroup analyses were conducted based on heart rate (HR).
Across all segments, r ranged from 0.79 to 0.91 and ICCs from 0.88 to 0.95 and the area under the ROC curve (AUC) values ranged from 0.799 to 0.847 (all p < 0.001). Peak correlation and agreement occurred at 5 min (r = 0.91; ICC = 0.95, 95 % CI: 0.92-0.96), with similarly high values at 3 and 7 min (r = 0.90; ICC = 0.93 and 0.94, respectively), followed by a gradual decline. At elevated HRs (>84 bpm), PCCT still maintained robust agreement with CMR (ICC = 0.78-0.92) and satisfactory diagnostic performance (AUC values ranged from 0.677 to 0.777).
PCCT enables accurate and consistent ECV quantification with strong concordance to CMR from 3 to 7 min post-contrast in swine models, providing a wide temporal window for clinical scanning. This was further confirmed by ROC analysis, and the method demonstrated robustness across varying heart rates.
计算机断层扫描(CT)技术的进步使得心肌细胞外容积(ECV)的定量分析成为可能,但CT衍生ECV的最佳对比剂注射后扫描时间仍不明确。在这项使用猪模型的临床前研究中,我们旨在以心脏磁共振成像(CMR)作为参考标准,确定光子计数CT(PCCT)衍生ECV的最佳对比剂注射后采集时间。
对梗死猪进行了23次CMR和PCCT扫描,对健康对照猪进行了9次扫描。在注射对比剂后3、5、7、9、12和15分钟进行PCCT扫描。计算所有心肌节段、梗死心肌和正常心肌中PCCT衍生ECV与CMR衍生ECV之间的Pearson相关系数(r)和组内相关系数(ICC)。进行受试者操作特征(ROC)曲线分析,以评估PCCT-ECV在区分延迟强化(LGE)阳性和LGE阴性心肌节段方面的诊断性能。根据心率(HR)进行亚组分析。
在所有节段中,r范围为0.79至0.91,ICC范围为0.88至0.95,ROC曲线下面积(AUC)值范围为0.799至0.847(所有p<0.001)。在5分钟时出现最高相关性和一致性(r=0.91;ICC=0.95,95%CI:0.92-0.96),在3分钟和7分钟时也有类似的高值(r=0.90;ICC分别为0.93和0.94),随后逐渐下降。在心率升高(>84次/分钟)时,PCCT与CMR仍保持较强的一致性(ICC=0.78-0.92)和令人满意的诊断性能(AUC值范围为0.677至0.777)。
在猪模型中,PCCT能够在注射对比剂后3至7分钟内准确、一致地定量ECV,与CMR具有高度一致性,为临床扫描提供了较宽的时间窗。ROC分析进一步证实了这一点,并且该方法在不同心率下均表现出稳健性。