Suppr超能文献

一种用于通过多尺度特征融合高效检测胸部X光片中胸部疾病的优化变压器模型。

An optimized transformer model for efficient detection of thoracic diseases in chest X-rays with multi-scale feature fusion.

作者信息

Yu Shasha, Zhou Peng

机构信息

Information Center, Zhongnan Hospital of Wuhan University, Wuhan, China.

FutureFront Interdisciplinary Research Institute, Huazhong University of Science and Technology, Wuhan, China.

出版信息

PLoS One. 2025 May 7;20(5):e0323239. doi: 10.1371/journal.pone.0323239. eCollection 2025.

Abstract

This study presents the development and application of an optimized Detection Transformer (DETR) model, known as CD-DETR, for the detection of thoracic diseases from chest X-ray (CXR) images. The CD-DETR model addresses the challenges of detecting minor pathologies in CXRs, particularly in regions with uneven medical resource distribution. In the central and western regions of China, due to a shortage of radiologists, CXRs from township hospitals are concentrated in central hospitals for diagnosis. This requires processing a large number of CXRs in a short period of time to obtain results. The model integrates a multi-scale feature fusion approach, leveraging Efficient Channel Attention (ECA-Net) and Spatial Attention Upsampling (SAU) to enhance feature representation and improve detection accuracy. It also introduces a dedicated Chest Diseases Intersection over Union (CDIoU) loss function to optimize the detection of small targets and reduce class imbalance. Experimental results on the NIH Chest X-ray dataset demonstrate that CD-DETR achieves a precision of 88.3% and recall of 86.6%, outperforming other DETR variants by an average of 5% and CNN-based models like YOLOv7 by 6-8% in these metrics, showing its potential for practical application in medical imaging diagnostics.

摘要

本研究介绍了一种优化的检测变压器(DETR)模型,即CD-DETR的开发和应用,用于从胸部X光(CXR)图像中检测胸部疾病。CD-DETR模型解决了在CXR中检测微小病变的挑战,特别是在医疗资源分布不均的地区。在中国中西部地区,由于放射科医生短缺,乡镇医院的CXR集中在中心医院进行诊断。这就需要在短时间内处理大量CXR以获得结果。该模型集成了多尺度特征融合方法,利用高效通道注意力(ECA-Net)和空间注意力上采样(SAU)来增强特征表示并提高检测精度。它还引入了专门的胸部疾病交并比(CDIoU)损失函数,以优化小目标检测并减少类别不平衡。在NIH胸部X光数据集上的实验结果表明,CD-DETR的精度达到88.3%,召回率达到86.6%,在这些指标上比其他DETR变体平均高出5%,比基于卷积神经网络的模型如YOLOv7高出6-8%,显示出其在医学影像诊断中的实际应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/12058152/798af8554156/pone.0323239.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验