Yu Shasha, Zhou Peng
Information Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
FutureFront Interdisciplinary Research Institute, Huazhong University of Science and Technology, Wuhan, China.
PLoS One. 2025 May 7;20(5):e0323239. doi: 10.1371/journal.pone.0323239. eCollection 2025.
This study presents the development and application of an optimized Detection Transformer (DETR) model, known as CD-DETR, for the detection of thoracic diseases from chest X-ray (CXR) images. The CD-DETR model addresses the challenges of detecting minor pathologies in CXRs, particularly in regions with uneven medical resource distribution. In the central and western regions of China, due to a shortage of radiologists, CXRs from township hospitals are concentrated in central hospitals for diagnosis. This requires processing a large number of CXRs in a short period of time to obtain results. The model integrates a multi-scale feature fusion approach, leveraging Efficient Channel Attention (ECA-Net) and Spatial Attention Upsampling (SAU) to enhance feature representation and improve detection accuracy. It also introduces a dedicated Chest Diseases Intersection over Union (CDIoU) loss function to optimize the detection of small targets and reduce class imbalance. Experimental results on the NIH Chest X-ray dataset demonstrate that CD-DETR achieves a precision of 88.3% and recall of 86.6%, outperforming other DETR variants by an average of 5% and CNN-based models like YOLOv7 by 6-8% in these metrics, showing its potential for practical application in medical imaging diagnostics.
本研究介绍了一种优化的检测变压器(DETR)模型,即CD-DETR的开发和应用,用于从胸部X光(CXR)图像中检测胸部疾病。CD-DETR模型解决了在CXR中检测微小病变的挑战,特别是在医疗资源分布不均的地区。在中国中西部地区,由于放射科医生短缺,乡镇医院的CXR集中在中心医院进行诊断。这就需要在短时间内处理大量CXR以获得结果。该模型集成了多尺度特征融合方法,利用高效通道注意力(ECA-Net)和空间注意力上采样(SAU)来增强特征表示并提高检测精度。它还引入了专门的胸部疾病交并比(CDIoU)损失函数,以优化小目标检测并减少类别不平衡。在NIH胸部X光数据集上的实验结果表明,CD-DETR的精度达到88.3%,召回率达到86.6%,在这些指标上比其他DETR变体平均高出5%,比基于卷积神经网络的模型如YOLOv7高出6-8%,显示出其在医学影像诊断中的实际应用潜力。
Comput Biol Med. 2025-5
BMC Med Inform Decis Mak. 2024-5-16
J Imaging Inform Med. 2024-12
Int J Comput Assist Radiol Surg. 2019-2-7
Front Public Health. 2024
IEEE Trans Pattern Anal Mach Intell. 2023-11
IEEE/ACM Trans Comput Biol Bioinform. 2024
Arch Public Health. 2023-2-22
Sensors (Basel). 2022-11-14
Sci Data. 2022-7-20