文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于通过多尺度特征融合高效检测胸部X光片中胸部疾病的优化变压器模型。

An optimized transformer model for efficient detection of thoracic diseases in chest X-rays with multi-scale feature fusion.

作者信息

Yu Shasha, Zhou Peng

机构信息

Information Center, Zhongnan Hospital of Wuhan University, Wuhan, China.

FutureFront Interdisciplinary Research Institute, Huazhong University of Science and Technology, Wuhan, China.

出版信息

PLoS One. 2025 May 7;20(5):e0323239. doi: 10.1371/journal.pone.0323239. eCollection 2025.


DOI:10.1371/journal.pone.0323239
PMID:40334189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12058152/
Abstract

This study presents the development and application of an optimized Detection Transformer (DETR) model, known as CD-DETR, for the detection of thoracic diseases from chest X-ray (CXR) images. The CD-DETR model addresses the challenges of detecting minor pathologies in CXRs, particularly in regions with uneven medical resource distribution. In the central and western regions of China, due to a shortage of radiologists, CXRs from township hospitals are concentrated in central hospitals for diagnosis. This requires processing a large number of CXRs in a short period of time to obtain results. The model integrates a multi-scale feature fusion approach, leveraging Efficient Channel Attention (ECA-Net) and Spatial Attention Upsampling (SAU) to enhance feature representation and improve detection accuracy. It also introduces a dedicated Chest Diseases Intersection over Union (CDIoU) loss function to optimize the detection of small targets and reduce class imbalance. Experimental results on the NIH Chest X-ray dataset demonstrate that CD-DETR achieves a precision of 88.3% and recall of 86.6%, outperforming other DETR variants by an average of 5% and CNN-based models like YOLOv7 by 6-8% in these metrics, showing its potential for practical application in medical imaging diagnostics.

摘要

本研究介绍了一种优化的检测变压器(DETR)模型,即CD-DETR的开发和应用,用于从胸部X光(CXR)图像中检测胸部疾病。CD-DETR模型解决了在CXR中检测微小病变的挑战,特别是在医疗资源分布不均的地区。在中国中西部地区,由于放射科医生短缺,乡镇医院的CXR集中在中心医院进行诊断。这就需要在短时间内处理大量CXR以获得结果。该模型集成了多尺度特征融合方法,利用高效通道注意力(ECA-Net)和空间注意力上采样(SAU)来增强特征表示并提高检测精度。它还引入了专门的胸部疾病交并比(CDIoU)损失函数,以优化小目标检测并减少类别不平衡。在NIH胸部X光数据集上的实验结果表明,CD-DETR的精度达到88.3%,召回率达到86.6%,在这些指标上比其他DETR变体平均高出5%,比基于卷积神经网络的模型如YOLOv7高出6-8%,显示出其在医学影像诊断中的实际应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/12058152/1259a480abd0/pone.0323239.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/12058152/798af8554156/pone.0323239.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/12058152/86e19d89ba37/pone.0323239.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/12058152/1259a480abd0/pone.0323239.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/12058152/798af8554156/pone.0323239.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/12058152/86e19d89ba37/pone.0323239.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/12058152/1259a480abd0/pone.0323239.g003.jpg

相似文献

[1]
An optimized transformer model for efficient detection of thoracic diseases in chest X-rays with multi-scale feature fusion.

PLoS One. 2025-5-7

[2]
Multiple kidney stones prediction with efficient RT-DETR model.

Comput Biol Med. 2025-5

[3]
BarlowTwins-CXR: enhancing chest X-ray abnormality localization in heterogeneous data with cross-domain self-supervised learning.

BMC Med Inform Decis Mak. 2024-5-16

[4]
Multi-scale Lesion Feature Fusion and Location-Aware for Chest Multi-disease Detection.

J Imaging Inform Med. 2024-12

[5]
Lesion-aware convolutional neural network for chest radiograph classification.

Clin Radiol. 2021-2

[6]
A review on lung boundary detection in chest X-rays.

Int J Comput Assist Radiol Surg. 2019-2-7

[7]
Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge.

Med Image Anal. 2024-10

[8]
FSH-DETR: An Efficient End-to-End Fire Smoke and Human Detection Based on a Deformable DEtection TRansformer (DETR).

Sensors (Basel). 2024-6-23

[9]
Enhanced Pneumonia Detection in Chest X-Rays Using Hybrid Convolutional and Vision Transformer Networks.

Curr Med Imaging. 2025

[10]
Automatic Localization and Identification of Thoracic Diseases from Chest X-rays with Deep Learning.

Curr Med Imaging. 2022

引用本文的文献

[1]
CXR-MultiTaskNet a unified deep learning framework for joint disease localization and classification in chest radiographs.

Sci Rep. 2025-8-31

本文引用的文献

[1]
TargetCLP: clathrin proteins prediction combining transformed and evolutionary scale modeling-based multi-view features via weighted feature integration approach.

Brief Bioinform. 2024-11-22

[2]
pACP-HybDeep: predicting anticancer peptides using binary tree growth based transformer and structural feature encoding with deep-hybrid learning.

Sci Rep. 2025-1-2

[3]
DeepAIPs-Pred: Predicting Anti-Inflammatory Peptides Using Local Evolutionary Transformation Images and Structural Embedding-Based Optimal Descriptors with Self-Normalized BiTCNs.

J Chem Inf Model. 2024-12-23

[4]
Work stress and competency among radiology residents: the mediating effect of resilience.

Front Public Health. 2024

[5]
Towards Large-Scale Small Object Detection: Survey and Benchmarks.

IEEE Trans Pattern Anal Mach Intell. 2023-11

[6]
Dynamic learning for imbalanced data in learning chest X-ray and CT images.

Heliyon. 2023-6-1

[7]
CDT-CAD: Context-Aware Deformable Transformers for End-to-End Chest Abnormality Detection on X-Ray Images.

IEEE/ACM Trans Comput Biol Bioinform. 2024

[8]
Health resource allocation in Western China from 2014 to 2018.

Arch Public Health. 2023-2-22

[9]
Insulator-Defect Detection Algorithm Based on Improved YOLOv7.

Sensors (Basel). 2022-11-14

[10]
VinDr-CXR: An open dataset of chest X-rays with radiologist's annotations.

Sci Data. 2022-7-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索