文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

mbSparse: an autoencoder-based imputation method to address sparsity in microbiome data.

作者信息

Qi Changlu, Cai Yiting, He Guoyou, Qian Kai, Guo Mian, Cheng Liang

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, HL, China.

Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, HL, China.

出版信息

Gut Microbes. 2025 Dec;17(1):2552347. doi: 10.1080/19490976.2025.2552347. Epub 2025 Sep 1.


DOI:10.1080/19490976.2025.2552347
PMID:40888610
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12407639/
Abstract

The involvement of gut microbiota in host physiological activities is crucial, yet the high sparsity of microbiome data, marked by numerous zeros in count matrices, presents huge analytical challenges. To overcome this, we developed mbSparse, an imputation algorithm that leverages deep learning rather than traditional predefined count distributions. Utilizing a feature autoencoder for learning sample representations and a conditional variational autoencoder (CVAE) for data reconstruction, mbSparse effectively integrates these processes to enhance imputation. Our results demonstrate that mbSparse achieves exceptional accuracy, with mean squared error reductions of up to 4.1 compared to existing microbiome methods, even amid outlier samples and varying sequencing depths. In colorectal cancer analysis, mbSparse increases the detection of validated disease-associated taxa from 7 to 27, while predictive accuracy improves, as evidenced by area under the precision-recall area under the curve values rising from 0.85 to 0.93. Additionally, mbSparse addresses non-biological zeros by restoring over 88% of removed counts and achieving a Pearson correlation of 0.9354 at a 10% removal rate, preserving essential taxonomic relationships. Finally, our exploration of mbSparse variants reveals that the CVAE is critical for enhancing accuracy, providing valuable insights for further optimizing microbiome data imputation techniques.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/12407639/652a355cafa7/KGMI_A_2552347_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/12407639/f1664cdfd4cb/KGMI_A_2552347_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/12407639/48a3747a57cb/KGMI_A_2552347_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/12407639/652a355cafa7/KGMI_A_2552347_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/12407639/f1664cdfd4cb/KGMI_A_2552347_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/12407639/48a3747a57cb/KGMI_A_2552347_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/12407639/652a355cafa7/KGMI_A_2552347_F0003_OC.jpg

相似文献

[1]
mbSparse: an autoencoder-based imputation method to address sparsity in microbiome data.

Gut Microbes. 2025-12

[2]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[3]
Early multi-cancer detection through deep learning: An anomaly detection approach using Variational Autoencoder.

J Biomed Inform. 2024-12

[4]
LorDist: a novel method for calculating the distance based on functional data analysis with application to longitudinal microbial data.

Microbiol Spectr. 2025-8-5

[5]
QIIME2 enhances multi-amplicon sequencing data analysis: a standardized and validated open-source pipeline for comprehensive 16S rRNA gene profiling.

Microbiol Spectr. 2025-7-25

[6]
Multi-scale variational autoencoder for imputation of missing values in untargeted metabolomics using whole-genome sequencing data.

Comput Biol Med. 2024-9

[7]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[8]
VTrans: A VAE-Based Pre-Trained Transformer Method for Microbiome Data Analysis.

J Comput Biol. 2025-9

[9]
Autoencoder-Assisted Stacked Ensemble Learning for Lymphoma Subtype Classification: A Hybrid Deep Learning and Machine Learning Approach.

Tomography. 2025-8-18

[10]
Feature selection with vector-symbolic architectures: a case study on microbial profiles of shotgun metagenomic samples of colorectal cancer.

Brief Bioinform. 2025-3-4

本文引用的文献

[1]
Screening and identification of antimicrobial peptides from the gut microbiome of cockroach Blattella germanica.

Microbiome. 2024-12-21

[2]
A Survey of Statistical Methods for Microbiome Data Analysis.

Front Appl Math Stat. 2022

[3]
suppresses colorectal cancer through the modulation of intestinal microbes and immune function.

Front Microbiol. 2024-3-22

[4]
Identification of a novel gut microbiota signature associated with colorectal cancer in Thai population.

Sci Rep. 2023-4-24

[5]
Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4.

Nat Biotechnol. 2023-11

[6]
gutMDisorder v2.0: a comprehensive database for dysbiosis of gut microbiota in phenotypes and interventions.

Nucleic Acids Res. 2023-1-6

[7]
Intestinal Microbiota in Colorectal Adenoma-Carcinoma Sequence.

Front Med (Lausanne). 2022-7-20

[8]
GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.

Brief Bioinform. 2022-9-20

[9]
Discovery of bioactive microbial gene products in inflammatory bowel disease.

Nature. 2022-6

[10]
mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis.

Genome Biol. 2022-4-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索