Suppr超能文献

溶解微滴电分析可实现阿托摩尔级别的检测。

Dissolving microdroplet electroanalysis enables attomolar-level detection.

作者信息

Nguyen James H, Rana Ashutosh, Hatch Savannah M, Dick Jeffrey E

机构信息

Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.

Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

Analyst. 2025 Sep 1. doi: 10.1039/d5an00795j.

Abstract

Trace detection is critical for identifying chemicals that would otherwise remain undetectable. While analytical techniques, such as spectroscopy, spectrometry, and electrochemical sensors, are effective at detecting low concentrations, achieving attomolar sensitivity remains a significant challenge. Here, we present an electroanalytical approach that leverages partitioning kinetics to detect attomolar concentrations of redox-active analytes. Using (Cp*)Fe as a model system, we demonstrate trace-level detection by facilitating the transfer of (Cp*)Fe from the bulk aqueous phase into 1,2-dichloroethane (DCE) microdroplets positioned atop a gold microelectrode (radius ∼6.25 μm). This partitioning arises from the greater solubility of (Cp*)Fe in DCE relative to its limited solubility in water, enriching the analyte concentration near the electrode as the microdroplets slowly dissolve into the aqueous phase. Additionally, we explored the role of oxygen in enhancing the electrochemical response: oxygen removal hindered detection at 1 aM, while oxygen saturation significantly amplified the redox peak signal. These findings underscore oxygen's role, which is likely a bimolecular reaction between oxygen and (Cp*)Fe in signal amplification. An EC' catalytic mechanism likely amplifies the electrochemical signal of (Cp*)Fe when the droplet is sufficiently small for feedback to occur, enabling attomolar detection of (Cp*)Fe. This study introduces a partitioning-based electroanalytical strategy taking advantage of an an EC' catalytic mechanism for ultra-low detection limits, offering promising applications in trace chemical analysis and advanced sensor technologies.

摘要

痕量检测对于识别那些否则将无法检测到的化学物质至关重要。虽然诸如光谱学、光谱测定法和电化学传感器等分析技术在检测低浓度物质方面很有效,但实现阿托摩尔灵敏度仍然是一项重大挑战。在此,我们提出一种电分析方法,该方法利用分配动力学来检测阿托摩尔浓度的氧化还原活性分析物。以(环戊二烯基)铁((Cp*)Fe)作为模型体系,我们通过促进(环戊二烯基)铁从本体水相转移到位于金微电极(半径约6.25μm)顶部的1,2 - 二氯乙烷(DCE)微滴中,展示了痕量水平检测。这种分配源于(环戊二烯基)铁在DCE中的溶解度高于其在水中的有限溶解度,随着微滴缓慢溶解到水相中,使电极附近的分析物浓度得以富集。此外,我们探讨了氧气在增强电化学响应中的作用:去除氧气阻碍了1阿托摩尔(aM)浓度下的检测,而氧气饱和则显著放大了氧化还原峰信号。这些发现强调了氧气的作用,其可能在信号放大过程中是氧气与(环戊二烯基)铁之间的双分子反应。当微滴足够小以发生反馈时,一种EC'催化机制可能会放大(环戊二烯基)铁的电化学信号,从而实现对(环戊二烯基)铁的阿托摩尔检测。本研究引入了一种基于分配的电分析策略,利用EC'催化机制实现超低检测限,在痕量化学分析和先进传感器技术中具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c42/12401217/965f1f5d9587/d5an00795j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验