Yeo Yee Hui, Zhang Mengyi, McCoy Martin S, Zu Jian, He Yingli, Liu Yi, Li Juan, Yan Taotao, Wang Yuan, Trivedi Hirsh D, Yang Ju Dong, Sundaram Vinay, Sun Xiaodan, Cao Zhujun, Wu Chun-Ying, Trebicka Jonel, Ji Fanpu
Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China.
Clin Mol Hepatol. 2025 Oct;31(4):1355-1371. doi: 10.3350/cmh.2025.0573. Epub 2025 Sep 1.
BACKGROUND/AIMS: Prediction of short-term mortality in patients with acute-on-chronic liver failure (ACLF) admitted to the intensive care unit (ICU) may enhance effective management.
To develop, explain, and validate a predictive machine learning (ML) model for short-term mortality in patients with ACLF with two or more organ failures (OFs). Utilizing a large ICU cohort with detailed clinical information, we identified ACLF patients with two or more OFs according to the EASL-CLIF and NACSELD definitions. ML model was developed for each definition to predict 30-day mortality. The Shapley value was estimated to explain the models. Validation and calibration of these models were performed.
Of 5,994 patients with cirrhosis admitted to ICU, 1,511 met NACSELD criteria, and 1,692 met EASL-CLIF grade II or higher criteria. The CatBoost ACLF (CBA) model had the greatest accuracy in the NACSELD cohort (area under curve [AUC] of 0.87), while the Random Forest ACLF (RFA) model performed best in the EASL-CLIF cohort (AUC of 0.83). Both models showed robust calibration. The models were explained by SHAP score analysis, yielding a rank list, and the top twelve predictors were selected. Both simplified models demonstrated similar performance (CBA model: AUC 0.89, RFA model: AUC 0.81) and significantly outperformed contemporary scoring systems, including CLIF-C ACLF and MELD 3.0. The models were validated in both internal and external cohorts. A simple-to-use online tool was created to predict mortality rates.
We presented explainable, well-validated, and calibrated predictive models for ACLF patients with two or more OFs, which outperformed existing predictive scores.
背景/目的:预测入住重症监护病房(ICU)的慢性肝衰竭急性发作(ACLF)患者的短期死亡率,可能会加强有效的管理。
为患有两个或更多器官衰竭(OF)的ACLF患者开发、解释和验证一个预测短期死亡率的机器学习(ML)模型。利用一个拥有详细临床信息的大型ICU队列,我们根据欧洲肝脏研究学会-慢性肝衰竭(EASL-CLIF)和北美终末期肝病研究联盟(NACSELD)的定义,确定了患有两个或更多OF的ACLF患者。针对每个定义开发ML模型,以预测30天死亡率。估计夏普利值来解释模型。对这些模型进行验证和校准。
在入住ICU的5994例肝硬化患者中,1511例符合NACSELD标准,1692例符合EASL-CLIF二级或更高标准。CatBoost ACLF(CBA)模型在NACSELD队列中具有最高的准确率(曲线下面积[AUC]为0.87),而随机森林ACLF(RFA)模型在EASL-CLIF队列中表现最佳(AUC为0.83)。两个模型均显示出稳健的校准。通过SHAP评分分析对模型进行解释,生成一个排名列表,并选择了前十二个预测因素。两个简化模型表现出相似的性能(CBA模型:AUC 0.89,RFA模型:AUC 0.81),并且显著优于当代评分系统,包括CLIF-C ACLF和MELD 3.0。这些模型在内部和外部队列中均得到验证。创建了一个易于使用的在线工具来预测死亡率。
我们为患有两个或更多OF的ACLF患者提供了可解释、经过充分验证和校准的预测模型,其性能优于现有的预测评分。