Suppr超能文献

通过综合机器学习分析提高系统性红斑狼疮患者亚临床心脏功能障碍的预测能力。

Enhancing predictions of subclinical cardiac dysfunction in SLE patients through integrative machine learning analysis.

作者信息

Liu Yuhong, Xie Siwei, Lin Zhiming, Zhao Changlin

机构信息

Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

出版信息

Lupus Sci Med. 2025 Sep 1;12(2):e001616. doi: 10.1136/lupus-2025-001616.

Abstract

OBJECTIVE

To investigate the two-dimensional speckle-tracking echocardiography (2D-STE) parameters associated with early impaired left ventricular systolic function in SLE patients and to estimate the potential clinical factors that may trigger and influence left ventricular systolic dysfunction.

METHODS

This study collected a total of 36 patients admitted to the rheumatology and immunology department of Sun Yat-sen University between January 2020 and December 2021, who were newly diagnosed with SLE and had a Systemic Lupus Erythematosus Disease Activity Index 2000 Score≥4 points. An equal number of healthy controls matched for gender and age were included. All participants underwent routine echocardiography and two-dimensional speckle-tracking echocardiography (2D-STE) examinations. Various clinical data were also collected. Machine learning and regressions were used to estimate potential risk factors for left ventricular systolic dysfunction in SLE patients.

RESULTS

Significant differences in 2D-STE parameters were found, including global longitudinal peak systolic strain (GLPS) (p-adjust<0.001), GLPS strain obtained from the apical two-chamber view and GLPS strain obtained from the apical four-chamber view (GLPS-A4C) (p-adjust=0.005), and GLPS strain obtained from the apical long-axis view (GLPS-APLAX) (p-adjust=0.003) between SLE patients and controls. Machine learning models, particularly GLPS-APLAX, showed excellent discrimination ability with an AUC of 0.93 (95% CI: 0.89 to 0.96) and an area under the precision-recall curve of 0.96. Multivariate regression further highlighted the inverse relationship between anti-U1 small nuclear ribonucleoprotein (U1RNP) antibodies and four GLPS-related continuous variable measures, with GLPS, GLPS-A4C and GLPS-APLAX measures having statistically significant effects (eg, GLPS coefficient=-3.71, 95% CI: -5.91 to -1.51, p=0.002).

CONCLUSIONS

This case-control study revealed that 2D-STE parameters can be used to predict subclinical cardiac dysfunction in SLE patients, and anti-U1RNP antibodies may be an essential predictive clinical factor. Machine learning may further assist in preliminary screening and quantifying left ventricular systolic dysfunction reasons in SLE patients.

摘要

目的

探讨二维斑点追踪超声心动图(2D-STE)参数与系统性红斑狼疮(SLE)患者早期左心室收缩功能受损的相关性,并评估可能触发和影响左心室收缩功能障碍的潜在临床因素。

方法

本研究收集了2020年1月至2021年12月期间中山大学附属第一医院风湿免疫科收治的36例初诊SLE患者,其系统性红斑狼疮疾病活动指数2000评分≥4分。纳入同等数量年龄和性别匹配的健康对照者。所有参与者均接受常规超声心动图和二维斑点追踪超声心动图(2D-STE)检查,并收集各种临床资料。采用机器学习和回归分析评估SLE患者左心室收缩功能障碍的潜在危险因素。

结果

SLE患者与对照组在2D-STE参数方面存在显著差异,包括整体纵向峰值收缩期应变(GLPS)(校正P<0.001)、心尖两腔视图获得的GLPS应变、心尖四腔视图获得的GLPS应变(GLPS-A4C)(校正P=0.005)以及心尖长轴视图获得的GLPS应变(GLPS-APLAX)(校正P=0.003)。机器学习模型,尤其是GLPS-APLAX,显示出出色的辨别能力,曲线下面积(AUC)为0.93(95%CI:0.89至0.96),精确召回率曲线下面积为0.96。多变量回归进一步突出了抗U1小核糖核蛋白(U1RNP)抗体与四项GLPS相关连续变量测量值之间的负相关关系,其中GLPS、GLPS-A4C和GLPS-APLAX测量值具有统计学显著影响(例如,GLPS系数=-3.71,95%CI:-5.91至-1.51,P=0.002)。

结论

本病例对照研究表明,2D-STE参数可用于预测SLE患者的亚临床心脏功能障碍,抗U1RNP抗体可能是一个重要的预测性临床因素。机器学习可能有助于进一步对SLE患者左心室收缩功能障碍的原因进行初步筛查和量化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4a5/12406935/b6781ea9e3cb/lupus-12-2-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验