Suppr超能文献

使用统计模型评估尼泊尔特里尤加河流域的洪水易发性。

Assessing flood susceptibility in a Triyuga watershed, Nepal using statistical models.

作者信息

Rayamajhi Dilip, Bhattarai Kripa, Giri Krishna, Budhathoki Monika, Karn Nikhil Kumar, Subedi Oshindeep, Regmi Ram Krishna, Dahal Vishan

机构信息

Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Lalitpur, Nepal.

出版信息

Sci Rep. 2025 Sep 1;15(1):32056. doi: 10.1038/s41598-025-10610-0.

Abstract

Floods are among the most damaging natural disasters, posing significant threats to socio-economic stability and environmental sustainability. This study addresses an important research gap by evaluating flood susceptibility in a small watershed (< 500 km), where no detailed susceptibility mapping has been conducted before. Flood susceptibility in the Triyuga Watershed, Nepal, was evaluated using three statistical models: Frequency Ratio (FR), Logistic Regression (LR), and Weight of Evidence (WoE), and the distinct hydrological behaviours of small watersheds were highlighted. A flood inventory map was developed from field surveys, identifying 190 flood and non-flood locations, with 70% allocated for training and 30% for validation. Eleven influential factors: LULC, distance from river, slope, flow direction, profile curvature, rainfall, DEM, TPI, TWI, NDVI, and aspect, were selected with no multicollinearity among them. The results revealed that: (1) the LR model exhibited the highest predictive accuracy with an AUC of 0.89, the lowest Brier Score (0.1186), and the highest Brier Skill Score (0.5254); (2) both the WoE and FR models also showed strong performance with AUC values of 0.85 and competitive Brier Scores and BSS values; and (3) the LR model's ability to handle multiple predictors simultaneously and capture complex relationships likely contributed to its superior performance, as reflected by its higher AUC and more favourable Brier validation metrics. These findings offer valuable insights for flood risk management and emphasize the necessity of precise flood susceptibility mapping to guide disaster preparedness and sustainable land-use planning.

摘要

洪水是最具破坏性的自然灾害之一,对社会经济稳定和环境可持续性构成重大威胁。本研究通过评估一个小流域(<500平方公里)的洪水易发性,填补了一项重要的研究空白,此前该流域尚未进行过详细的易发性制图。利用频率比(FR)、逻辑回归(LR)和证据权重(WoE)三种统计模型,对尼泊尔特里尤加流域的洪水易发性进行了评估,并突出了小流域独特的水文行为。通过实地调查绘制了洪水清单地图,确定了190个洪水和非洪水地点,其中70%用于训练,30%用于验证。选择了11个影响因素:土地利用/土地覆盖变化(LULC)、距河流距离、坡度、水流方向、剖面曲率、降雨量、数字高程模型(DEM)、地形位置指数(TPI)、地形湿润指数(TWI)、归一化植被指数(NDVI)和坡向,这些因素之间不存在多重共线性。结果表明:(1)LR模型表现出最高的预测准确性,曲线下面积(AUC)为0.89,布里尔得分最低(0.1186),布里尔技能得分最高(0.5254);(2)WoE和FR模型也表现出较强的性能,AUC值为0.85,布里尔得分和BSS值具有竞争力;(3)LR模型能够同时处理多个预测变量并捕捉复杂关系,这可能是其性能优越的原因,其较高的AUC和更有利的布里尔验证指标反映了这一点。这些发现为洪水风险管理提供了有价值的见解,并强调了精确的洪水易发性制图对指导灾害准备和可持续土地利用规划的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f8/12402490/a79ea2cb5b88/41598_2025_10610_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验