Suppr超能文献

利用遥感和机器学习技术检测和监测入侵物种一枝黄花的入侵情况。

Harnessing remote sensing and machine learning techniques for detecting and monitoring the invasion of goldenrod invasive species.

作者信息

Malinowski Radek, Krupiński Michał, Skórka Piotr, Mikołajczyk Łukasz, Chuda Karolina, Lenda Magdalena

机构信息

Wasat Ltd., Warsaw, Poland.

Space Research Centre, Polish Academy of Sciences, Warsaw, Poland.

出版信息

Sci Rep. 2025 Sep 1;15(1):32222. doi: 10.1038/s41598-025-17440-0.

Abstract

Invasive alien species, such as goldenrods (Solidago spp.), pose significant threats to biodiversity and ecosystem services across Europe. Effective monitoring of these species is essential for early intervention and informed management, yet traditional ground surveys are often labor-intensive and limited in scale. This study aims to evaluate the potential of remote sensing and machine learning for detecting and monitoring Solidago spp. in Kampinos National Park, Poland, using multitemporal imagery from Sentinel-2 and PlanetScope satellites. We compared the performance of Random Forest and One-Class Support Vector Machine classifiers across 17 classification scenarios incorporating spectral bands, vegetation indices, and temporal statistics. Our results showed that Random Forest consistently outperformed One-Class Support Vector Machine (OCSVM) by 1%-15%, achieving the highest F1-score of 0.98 using multitemporal Sentinel-2 data and 2%-29% using PlanetScope imagery. Sentinel-2 data, with its broader spectral range, provided better large-scale detection accuracy, while PlanetScope's higher spatial resolution enhanced local detail. Goldenrod patches are distinctive even in autumn and winter due to living or dry biomass that persists the whole year. In our study autumn imagery (October-November) yielded the most reliable detection due to distinct phenological characteristics of Solidago during this period. Importantly, our analysis demonstrates that the added complexity of vegetation indices does not necessarily improve classification accuracy for goldenrod detection. Our findings present high-accuracy invasive species monitoring approach and highlight the critical role of phenological timing in remote sensing-based ecological assessments.

摘要

入侵外来物种,如一枝黄花属植物(Solidago spp.),对欧洲各地的生物多样性和生态系统服务构成了重大威胁。对这些物种进行有效监测对于早期干预和明智管理至关重要,然而传统的地面调查往往劳动强度大且规模有限。本研究旨在利用哨兵2号和行星Scope卫星的多时相影像,评估遥感和机器学习在波兰坎皮诺斯国家公园检测和监测一枝黄花属植物的潜力。我们在17种包含光谱波段、植被指数和时间统计数据的分类场景中,比较了随机森林和一类支持向量机分类器的性能。我们的结果表明,随机森林的表现始终比一类支持向量机(OCSVM)高出1%-15%,使用多时相哨兵2号数据时F1分数最高达到0.98,使用行星Scope影像时则为2%-29%。哨兵2号数据光谱范围更广,提供了更好的大规模检测精度,而行星Scope的更高空间分辨率增强了局部细节。由于全年都存在的活体或干枯生物量,即使在秋冬季节,一枝黄花斑块也很独特。在我们的研究中,由于在此期间一枝黄花具有明显的物候特征,秋季影像(10月至11月)产生了最可靠的检测结果。重要的是,我们的分析表明,植被指数增加的复杂性不一定能提高一枝黄花检测的分类精度。我们的研究结果提出了一种高精度的入侵物种监测方法,并突出了物候时间在基于遥感的生态评估中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0314/12402104/c6c109541e37/41598_2025_17440_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验