Alonso-Fernández Sergio, Gutiérrez-Del-Río Ignacio, Lombó Felipe, Fernández-Del-Campo-García María Teresa, Herrero-Hernández Eliseo, García-Gómez Diego, Díez Paula, Montes-Bayón María, Fernández-García Gemma, Manteca Angel
Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, c/Julian Claveria 6, Oviedo, 33006, Spain.
Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, Plaza de los Caídos s/n, Salamanca, 37008, Spain.
Sci Rep. 2025 Sep 1;15(1):32112. doi: 10.1038/s41598-025-15457-z.
Streptomycetes are biotechnologically valuable bacteria with complex cell division that produce extracellular vesicles (EVs), typically nanometre-sized but can reach 2.5 μm in diameter. Streptomyces also produce dividing wall-deficient L-forms (0.5-7 μm diameter) and, under hyperosmotic stress, non-dividing wall-deficient S-cells (3-4 μm diameter). The boundaries between EVs, L-forms and S-cells are not always clear, as large DNA-containing EVs can resemble small L-forms and S-cells in size. Both EVs and wall-deficient cells offer competitive advantages, such as inter-bacterial signalling, antibiotic transport, resistance and phage defence. However, their formation mechanisms remain poorly understood. We identified sco1758 (engA GTPase), sco0954 (methionine N-acetyltransferase), sco4439 (D-Ala-D-Ala carboxypeptidase), and sco4440 (GOLPH3-like) as important for wall-deficient cell formation in Streptomyces coelicolor under hyperosmotic sucrose conditions. Mutations in sco4439 and sco4440 increased tetra-tetra(Gly) and tetra(Gly)-penta(Gly) (4-3) peptidoglycan (PG) dimers, while sco1758 affected only the former. Complementation reversed these changes. sco0954 overexpression enhanced PG-associated methionine acetylation and oxidation. Our findings suggest that PG dimerisation and methionine modification may contribute to the formation of wall-deficient cells under hyperosmotic sucrose stress. Further research is required to elucidate how SCO1758, SCO0954 and SCO4439/40 modulate PG architecture and to evaluate their potential to promote EV production for biotechnological applications.
链霉菌是具有复杂细胞分裂过程的、在生物技术领域具有重要价值的细菌,它们能产生细胞外囊泡(EVs),通常为纳米大小,但直径可达2.5微米。链霉菌还能产生细胞壁缺陷型的L型菌(直径0.5 - 7微米),并且在高渗胁迫下,能产生非分裂型的细胞壁缺陷型S细胞(直径3 - 4微米)。EVs、L型菌和S细胞之间的界限并不总是清晰的,因为含有大量DNA的EVs在大小上可能类似于小的L型菌和S细胞。EVs和细胞壁缺陷型细胞都具有竞争优势,比如细菌间信号传递、抗生素运输、抗性和噬菌体防御。然而,它们的形成机制仍知之甚少。我们鉴定出sco1758(engA GTP酶)、sco0954(甲硫氨酸N - 乙酰转移酶)、sco4439(D - 丙氨酰 - D - 丙氨酸羧肽酶)和sco4440(类高尔基体蛋白3)在高渗蔗糖条件下对天蓝色链霉菌中细胞壁缺陷型细胞的形成很重要。sco4439和sco4440的突变增加了四聚 - 四聚(甘氨酸)和四聚(甘氨酸) - 五聚(甘氨酸)(4 - 3)肽聚糖(PG)二聚体,而sco1758仅影响前者。互补作用逆转了这些变化。sco0954的过表达增强了与PG相关的甲硫氨酸乙酰化和氧化。我们的研究结果表明,PG二聚化和甲硫氨酸修饰可能有助于在高渗蔗糖胁迫下形成细胞壁缺陷型细胞。需要进一步研究来阐明SCO1758、SCO0954和SCO4439/40如何调节PG结构,并评估它们在生物技术应用中促进EV产生的潜力。