Wang Xingxia, Li Rumeng, Zhu Bocheng, Zhu Xiaofeng, Lou Baiyang
Department of Nephrology, No. 903 Hospital of PLA Joint Logistics Support Force, Hangzhou, 310003, China.
Int Urol Nephrol. 2025 Sep 1. doi: 10.1007/s11255-025-04761-2.
Renal ischemia-reperfusion injury (IRI) remains a major challenge impacting graft survival following transplantation. During the ischemic phase, mitochondrial dysfunction leads to adenosine triphosphate (ATP) depletion and calcium overload. Upon reperfusion, reactive oxygen species (ROS) are generated, exacerbating mitochondrial damage and triggering inflammatory responses. This process is associated not only with delayed graft function (DGF) but also with allograft dysfunction. Mitochondria, serving as the high-energy-demand hub of the kidney, require precise regulation of their dynamic balance and mitophagy. Mitophagy selectively removes damaged mitochondria to maintain cellular homeostasis. In the context of IRI, mitophagy exhibits a bidirectional regulatory role: moderate activation can improve energy metabolism, whereas excessive or insufficient activation may exacerbate renal injury. To provide new insights for enhancing graft survival rates, this paper examines the molecular mechanisms, therapeutic targets, and dual regulatory roles involved.
肾缺血再灌注损伤(IRI)仍然是影响移植后移植物存活的一项重大挑战。在缺血阶段,线粒体功能障碍会导致三磷酸腺苷(ATP)耗竭和钙超载。再灌注时,会产生活性氧(ROS),加剧线粒体损伤并引发炎症反应。这一过程不仅与移植肾功能延迟恢复(DGF)有关,还与同种异体移植物功能障碍有关。线粒体作为肾脏中对能量需求较高的核心结构,需要对其动态平衡和线粒体自噬进行精确调控。线粒体自噬可选择性清除受损线粒体以维持细胞稳态。在IRI的背景下,线粒体自噬发挥双向调节作用:适度激活可改善能量代谢,而激活过度或不足可能会加重肾损伤。为提高移植物存活率提供新见解,本文探讨了其中涉及的分子机制、治疗靶点和双重调节作用。
Int Urol Nephrol. 2025-9-1
Cochrane Database Syst Rev. 2024-7-9
Arch Ital Urol Androl. 2025-6-30
Neural Regen Res. 2026-2-1
Cell. 2024-5-23
FEBS J. 2024-12