文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

铜绿假单胞菌驱动的气道生态失调与非囊性纤维化支气管扩张症急性加重的机器学习预测:一种微生物-炎症特征方法

Pseudomonas aeruginosa-driven airway dysbiosis and machine learning prediction of acute exacerbations in non-cystic fibrosis bronchiectasis: a microbial-inflammatory signature approach.

作者信息

Wang Wen-Wen, Wang Yu-Han, Xu Jian, Song Yuan-Lin, Xu Jin-Fu

机构信息

Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.

Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.

出版信息

BMC Pulm Med. 2025 Sep 1;25(1):419. doi: 10.1186/s12890-025-03892-7.


DOI:10.1186/s12890-025-03892-7
PMID:40890730
Abstract

BACKGROUND: While Pseudomonas aeruginosa (PA) colonization is linked to poor outcomes in bronchiectasis, emerging evidence suggests that microbial community collapse-marked by diversity loss and depletion of commensal taxa-may better reflect disease progression than pathogen load alone. This study investigates whether airway microbiota dysbiosis driven by PA colonization induces ecological fragility and evaluates the predictive utility of integrating microbial diversity indices with systemic inflammation markers to forecast 1-year acute exacerbation risk using interpretable machine learning. METHODS: Bronchoalveolar lavage fluid (BALF) samples from 23 patients (8 PA-colonized, 15 non-colonized) underwent 16 S rRNA gene sequencing. Microbial diversity and taxonomic composition were analyzed. An eXtreme Gradient Boosting (XGBoost) model with SHapley Additive exPlanations (SHAP) analysis was constructed to assess exacerbation risk, focusing on microbial and inflammatory markers. RESULTS: PA-colonized patients (P1) exhibited significantly worse clinical severity than non-colonized patients (P2), with higher Bronchiectasis Severity Index scores (8.38 vs. 4.33, P < 0.01), poorer quality-of-life (SGRQ: 35.75 vs. 22.79; CAT: 24.00 vs. 16.26, P < 0.01), and elevated dyspnea (mMRC: 1.62 vs. 0.95, P < 0.05). P1 also had more acute exacerbations annually (retrospective: 3.00 vs. 1.20; prospective: 3.75 vs. 0.80, P < 0.05-0.001). Notably, P1 exhibited significantly reduced alpha diversity compared to P2 (Shannon index: 1.96 vs. 3.47; Simpson index: 0.46 vs. 0.77, P < 0.05). Weighted UniFrac PCoA revealed distinct clustering between groups (R²=0.162, P < 0.05). The XGBoost model, integrating microbial taxa relative abundances, alpha diversity indices, and inflammatory markers demonstrated robust performance in predicting 1-year acute exacerbation risk (AUC = 0.85). SHAP analysis identified the microbial diversity, rather than Pseudomona abundance was the most influential predictor of exacerbation risk. CONCLUSIONS: PA colonization disrupts airway microbial diversity and outcompetes commensal species in bronchiectasis, yet our XGBoost model reveals that ecological resilience-not pathogen load-best predicts exacerbation risk when integrated with inflammatory markers. This paradigm shift from pathogen-centric to ecosystem-driven risk assessment provides an actionable framework for personalized management and antibiotic stewardship in chronic airway diseases.

摘要

背景:虽然铜绿假单胞菌(PA)定植与支气管扩张症的不良预后相关,但新出现的证据表明,以共生菌群多样性丧失和耗竭为特征的微生物群落崩溃可能比单独的病原体负荷更能反映疾病进展。本研究调查由PA定植驱动的气道微生物群失调是否会导致生态脆弱性,并评估将微生物多样性指数与全身炎症标志物相结合以使用可解释机器学习预测1年急性加重风险的预测效用。 方法:对23例患者(8例PA定植,15例未定植)的支气管肺泡灌洗液(BALF)样本进行16S rRNA基因测序。分析微生物多样性和分类组成。构建具有SHapley加性解释(SHAP)分析的极端梯度提升(XGBoost)模型,以评估加重风险,重点关注微生物和炎症标志物。 结果:PA定植患者(P1)的临床严重程度明显高于未定植患者(P2),支气管扩张严重指数得分更高(8.38对4.33,P<0.01),生活质量更差(SGRQ:35.75对22.79;CAT:24.00对16.26,P<0.01),呼吸困难加重(mMRC:1.62对0.95,P<0.05)。P1每年的急性加重次数也更多(回顾性:3.00对1.20;前瞻性:3.75对0.80,P<0.05-0.001)。值得注意的是,与P2相比,P1的α多样性显著降低(香农指数:1.96对3.47;辛普森指数:0.46对0.77,P<0.05)。加权UniFrac PCoA显示两组之间有明显的聚类(R²=0.162,P<0.05)。整合微生物分类群相对丰度、α多样性指数和炎症标志物的XGBoost模型在预测1年急性加重风险方面表现出强大的性能(AUC=0.85)。SHAP分析确定微生物多样性而非假单胞菌丰度是加重风险最有影响力的预测因子。 结论:PA定植破坏了支气管扩张症患者气道微生物多样性,并胜过共生菌,但我们的XGBoost模型显示,与炎症标志物相结合时,生态恢复力而非病原体负荷最能预测加重风险。这种从以病原体为中心到生态系统驱动的风险评估的范式转变为慢性气道疾病的个性化管理和抗生素管理提供了一个可操作的框架。

相似文献

[1]
Pseudomonas aeruginosa-driven airway dysbiosis and machine learning prediction of acute exacerbations in non-cystic fibrosis bronchiectasis: a microbial-inflammatory signature approach.

BMC Pulm Med. 2025-9-1

[2]
Rapid microbial evaluation of acute exacerbations of bronchiectasis using FilmArray Pneumonia plus Panel in a real-world setting.

Ther Adv Respir Dis. 2025

[3]
Endotypes of Infection in Bronchiectasis Are Associated with Inhaled Antibiotic Response: Results from Two Randomized, Double-Blind, Placebo-controlled Phase III Trials (ORBIT 3 and ORBIT 4).

Am J Respir Crit Care Med. 2025-8

[4]
Sputum colour charts to guide antibiotic self-treatment of acute exacerbation of chronic obstructive pulmonary disease: the Colour-COPD RCT.

Health Technol Assess. 2025-5

[5]
Microbiome and metabolome patterns after lung transplantation reflect underlying disease and chronic lung allograft dysfunction.

Microbiome. 2024-10-9

[6]
Integrating Gut Microbiome and Metabolomics with Magnetic Resonance Enterography to Advance Bowel Damage Prediction in Crohn's Disease.

J Inflamm Res. 2025-6-11

[7]
Dual antibiotics for bronchiectasis.

Cochrane Database Syst Rev. 2018-6-11

[8]
[Guidelines for the prevention and management of bronchial asthma (2024 edition)].

Zhonghua Jie He He Hu Xi Za Zhi. 2025-3-12

[9]
Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis.

Cochrane Database Syst Rev. 2017-4-25

[10]
Bronchoscopy-guided antimicrobial therapy for cystic fibrosis.

Cochrane Database Syst Rev. 2013-12-23

本文引用的文献

[1]
Targeting neutrophil serine proteases in bronchiectasis.

Eur Respir J. 2025-1-2

[2]
Infection and the microbiome in bronchiectasis.

Eur Respir Rev. 2024-7

[3]
Comparative microbiome analysis in cystic fibrosis and non-cystic fibrosis bronchiectasis.

Respir Res. 2024-5-18

[4]
Inflammatory Molecular Endotypes in Bronchiectasis: A European Multicenter Cohort Study.

Am J Respir Crit Care Med. 2023-12-1

[5]
Lower Airway Dysbiosis Augments Lung Inflammatory Injury in Mild-to-Moderate Chronic Obstructive Pulmonary Disease.

Am J Respir Crit Care Med. 2023-11-15

[6]
Airway dysbiosis accelerates lung function decline in chronic obstructive pulmonary disease.

Cell Host Microbe. 2023-6-14

[7]
Altered fecal microbiome and metabolome in adult patients with non-cystic fibrosis bronchiectasis.

Respir Res. 2022-11-19

[8]
A Double-Blind Randomized Placebo-Controlled Phase 3 Trial of Tobramycin Inhalation Solution in Adults With Bronchiectasis With Pseudomonas aeruginosa Infection.

Chest. 2023-1

[9]
Machine learning for the prediction of acute kidney injury in patients with sepsis.

J Transl Med. 2022-5-13

[10]
Dietary Chito-oligosaccharides Improve Intestinal Immunity Regulating Microbiota and Th17/Treg Balance-Related Immune Signaling in Piglets Challenged by Enterotoxigenic .

J Agric Food Chem. 2021-12-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索