Suppr超能文献

铜绿假单胞菌驱动的气道生态失调与非囊性纤维化支气管扩张症急性加重的机器学习预测:一种微生物-炎症特征方法

Pseudomonas aeruginosa-driven airway dysbiosis and machine learning prediction of acute exacerbations in non-cystic fibrosis bronchiectasis: a microbial-inflammatory signature approach.

作者信息

Wang Wen-Wen, Wang Yu-Han, Xu Jian, Song Yuan-Lin, Xu Jin-Fu

机构信息

Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.

Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.

出版信息

BMC Pulm Med. 2025 Sep 1;25(1):419. doi: 10.1186/s12890-025-03892-7.

Abstract

BACKGROUND

While Pseudomonas aeruginosa (PA) colonization is linked to poor outcomes in bronchiectasis, emerging evidence suggests that microbial community collapse-marked by diversity loss and depletion of commensal taxa-may better reflect disease progression than pathogen load alone. This study investigates whether airway microbiota dysbiosis driven by PA colonization induces ecological fragility and evaluates the predictive utility of integrating microbial diversity indices with systemic inflammation markers to forecast 1-year acute exacerbation risk using interpretable machine learning.

METHODS

Bronchoalveolar lavage fluid (BALF) samples from 23 patients (8 PA-colonized, 15 non-colonized) underwent 16 S rRNA gene sequencing. Microbial diversity and taxonomic composition were analyzed. An eXtreme Gradient Boosting (XGBoost) model with SHapley Additive exPlanations (SHAP) analysis was constructed to assess exacerbation risk, focusing on microbial and inflammatory markers.

RESULTS

PA-colonized patients (P1) exhibited significantly worse clinical severity than non-colonized patients (P2), with higher Bronchiectasis Severity Index scores (8.38 vs. 4.33, P < 0.01), poorer quality-of-life (SGRQ: 35.75 vs. 22.79; CAT: 24.00 vs. 16.26, P < 0.01), and elevated dyspnea (mMRC: 1.62 vs. 0.95, P < 0.05). P1 also had more acute exacerbations annually (retrospective: 3.00 vs. 1.20; prospective: 3.75 vs. 0.80, P < 0.05-0.001). Notably, P1 exhibited significantly reduced alpha diversity compared to P2 (Shannon index: 1.96 vs. 3.47; Simpson index: 0.46 vs. 0.77, P < 0.05). Weighted UniFrac PCoA revealed distinct clustering between groups (R²=0.162, P < 0.05). The XGBoost model, integrating microbial taxa relative abundances, alpha diversity indices, and inflammatory markers demonstrated robust performance in predicting 1-year acute exacerbation risk (AUC = 0.85). SHAP analysis identified the microbial diversity, rather than Pseudomona abundance was the most influential predictor of exacerbation risk.

CONCLUSIONS

PA colonization disrupts airway microbial diversity and outcompetes commensal species in bronchiectasis, yet our XGBoost model reveals that ecological resilience-not pathogen load-best predicts exacerbation risk when integrated with inflammatory markers. This paradigm shift from pathogen-centric to ecosystem-driven risk assessment provides an actionable framework for personalized management and antibiotic stewardship in chronic airway diseases.

摘要

背景

虽然铜绿假单胞菌(PA)定植与支气管扩张症的不良预后相关,但新出现的证据表明,以共生菌群多样性丧失和耗竭为特征的微生物群落崩溃可能比单独的病原体负荷更能反映疾病进展。本研究调查由PA定植驱动的气道微生物群失调是否会导致生态脆弱性,并评估将微生物多样性指数与全身炎症标志物相结合以使用可解释机器学习预测1年急性加重风险的预测效用。

方法

对23例患者(8例PA定植,15例未定植)的支气管肺泡灌洗液(BALF)样本进行16S rRNA基因测序。分析微生物多样性和分类组成。构建具有SHapley加性解释(SHAP)分析的极端梯度提升(XGBoost)模型,以评估加重风险,重点关注微生物和炎症标志物。

结果

PA定植患者(P1)的临床严重程度明显高于未定植患者(P2),支气管扩张严重指数得分更高(8.38对4.33,P<0.01),生活质量更差(SGRQ:35.75对22.79;CAT:24.00对16.26,P<0.01),呼吸困难加重(mMRC:1.62对0.95,P<0.05)。P1每年的急性加重次数也更多(回顾性:3.00对1.20;前瞻性:3.75对0.80,P<0.05-0.001)。值得注意的是,与P2相比,P1的α多样性显著降低(香农指数:1.96对3.47;辛普森指数:0.46对0.77,P<0.05)。加权UniFrac PCoA显示两组之间有明显的聚类(R²=0.162,P<0.05)。整合微生物分类群相对丰度、α多样性指数和炎症标志物的XGBoost模型在预测1年急性加重风险方面表现出强大的性能(AUC=0.85)。SHAP分析确定微生物多样性而非假单胞菌丰度是加重风险最有影响力的预测因子。

结论

PA定植破坏了支气管扩张症患者气道微生物多样性,并胜过共生菌,但我们的XGBoost模型显示,与炎症标志物相结合时,生态恢复力而非病原体负荷最能预测加重风险。这种从以病原体为中心到生态系统驱动的风险评估的范式转变为慢性气道疾病的个性化管理和抗生素管理提供了一个可操作的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验