Suppr超能文献

使用TESLA框架通过计算流体动力学对颅内动脉瘤进行局部血流动力学评估和破裂风险评估。

Localized hemodynamic assessment and rupture risk evaluation of intracranial aneurysms using the TESLA framework via computational fluid dynamics.

作者信息

Ali Sajid, Chen Zhen-Ye, Wu Te-Chang, Huang Wei-Chien, Shih Tzu-Ching

机构信息

Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.

Department of Medical Imaging, Chi-Mei Medical Center, Tainan, Taiwan.

出版信息

Med Phys. 2025 Sep;52(9):e18071. doi: 10.1002/mp.18071.

Abstract

BACKGROUND

Intracranial aneurysms, particularly saccular types, are localized dilations of cerebral vessels prone to rupture, leading to life-threatening complications such as subarachnoid hemorrhage.

PURPOSE

This study aimed to characterize the localized hemodynamic environment within the aneurysm dome and evaluate how spatial interactions among key flow parameters contribute to rupture risk, using a synergistic analytical framework.

METHODS

We applied the targeted evaluation of synergistic links in aneurysms (TESLA) framework to analyze 18 intracranial aneurysms from 15 patients. Patient-specific vascular geometries were reconstructed from high-resolution three-dimensional (3D) time-of-flight magnetic resonance angiography (TOF-MRA), acquired using a 1.5T magnetic resonance imaging (MRI) scanner (MAGNETOM Aera, Siemens Healthineers) with a 20-channel head and neck coil. TOF-MRA employed a gradient-echo sequence leveraging the inflow effect to enhance signal intensity from flowing blood, obviating the need for contrast agents. Imaging parameters were: TR/TE = 24/7 ms, flip angle = 22°, field of view (FOV) = 230 × 200 mm, matrix size = 320 × 196, 100 contiguous slices with a slice thickness of 0.7 mm, and voxel dimensions = 0.72 × 1.02 × 0.7 mm (acquired) and 0.7 × 0.7 × 0.7 mm (reconstructed isotropic). Computational fluid dynamics (CFD) simulations were performed to wall shear stress (WSS), time-averaged WSS (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), pressure gradient (PG), and vorticity. A standardized pulsatile inflow waveform (mean flow rate: 275 mL min) was applied uniformly at the inlet of each model. Outflow boundary conditions assumed constant pressure at distal locations, with resistance equalization via extension segments. Hemodynamic parameters were compared between ruptured and unruptured aneurysms.

RESULTS

The CFD analysis of 18 intracranial aneurysms revealed marked hemodynamic heterogeneity within the aneurysm dome, with WSS ranging from an average of 0.7042 Pa in low-stress zones associated with stagnant flow to peaks of 54.0371 Pa in high-stress regions indicative of mechanical strain, while TAWSS averaged 12.4875 Pa with maximum values reaching 25.9159 Pa, highlighting localized stress amplifications. Vorticity averaged 2,422.34 s with peaks up to 4,645.50 s, reflecting turbulent and recirculating flow, complemented by an OSI averaging 0.4557 and peaking at 0.4952, and RRT averaging 6.2278 Pa, both signifying oscillatory flow and stagnation linked to increased wall vulnerability. Comparative analysis between ruptured and unruptured aneurysms demonstrated markedly higher maximum values of WSS, TAWSS, OSI, PGs, and vorticity (averaging 33,635.322 Pa m and peaking at 47,390.5 Pa m) in ruptured cases, alongside elevated RRT, underscoring the association of extreme hemodynamic disturbances with rupture risk.

CONCLUSION

The TESLA framework effectively captured localized hemodynamic extremes-elevated stress, oscillatory flow, and prolonged residence time-that were more pronounced in ruptured aneurysms. These findings support TESLA's utility in improving rupture risk assessment and guiding personalized clinical management.

摘要

背景

颅内动脉瘤,尤其是囊状动脉瘤,是脑血管的局限性扩张,易于破裂,会导致如蛛网膜下腔出血等危及生命的并发症。

目的

本研究旨在使用协同分析框架来表征动脉瘤瘤腔内的局部血流动力学环境,并评估关键血流参数之间的空间相互作用如何影响破裂风险。

方法

我们应用动脉瘤协同链接靶向评估(TESLA)框架分析了15例患者的18个颅内动脉瘤。通过使用配备20通道头颈线圈的1.5T磁共振成像(MRI)扫描仪(MAGNETOM Aera,西门子医疗)获取的高分辨率三维(3D)时间飞跃磁共振血管造影(TOF-MRA)重建患者特异性血管几何结构。TOF-MRA采用梯度回波序列,利用流入效应增强流动血液的信号强度,无需使用造影剂。成像参数为:TR/TE = 24/7 ms,翻转角 = 22°,视野(FOV)= 230×200 mm,矩阵大小 = 320×196,100个连续切片,切片厚度为0.7 mm,体素尺寸 = 0.72×1.02×0.7 mm(采集)和0.7×0.7×0.7 mm(重建各向同性)。进行计算流体动力学(CFD)模拟以计算壁面剪切应力(WSS)、时间平均WSS(TAWSS)、振荡剪切指数(OSI)、相对停留时间(RRT)、压力梯度(PG)和涡度。在每个模型的入口处均匀施加标准化的脉动流入波形(平均流速:275 mL/min)。流出边界条件假设远端位置压力恒定,通过延伸段实现阻力均衡。比较破裂和未破裂动脉瘤的血流动力学参数。

结果

对18个颅内动脉瘤的CFD分析显示,动脉瘤瘤腔内存在明显的血流动力学异质性,WSS范围从与停滞血流相关的低应力区域的平均0.7042 Pa到指示机械应变的高应力区域的峰值54.0371 Pa,而TAWSS平均为12.4875 Pa,最大值达到25.9159 Pa,突出了局部应力放大。涡度平均为2,422.34 s,峰值高达4,645.50 s,反映了湍流和再循环流动,同时OSI平均为0.4557,峰值为0.4952,RRT平均为6.2278 Pa,两者均表示与壁面易损性增加相关的振荡流动和停滞。破裂和未破裂动脉瘤之间的比较分析表明,破裂病例中的WSS、TAWSS、OSI、PGs和涡度的最大值明显更高(平均为33,635.322 Pa m,峰值为47,390.5 Pa m),同时RRT升高,强调了极端血流动力学紊乱与破裂风险的关联。

结论

TESLA框架有效地捕捉到了局部血流动力学极端情况——应力升高、振荡流动和停留时间延长——这些在破裂动脉瘤中更为明显。这些发现支持了TESLA在改善破裂风险评估和指导个性化临床管理方面的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验