Fechtmeyer Phoebe H, Martinez Cameron, Yeh Johannes T-H
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, United States.
ACS Chem Biol. 2025 Sep 19;20(9):2056-2062. doi: 10.1021/acschembio.5c00343. Epub 2025 Sep 2.
Targeted protein degradation (TPD) is a promising modality that leverages the endogenous cellular protein degradation machinery to degrade selected proteins. Recently, we validated CUL3 E3 ligase as a new actionable E3 ligase for TPD application by developing a synthetic macrocycle ligand to engage KLHL20. Linking the KLHL20 ligand to JQ1, we created the PROTAC molecule BTR2004, which exhibited potent degradation of BET family proteins BRD 2, 3, and 4. As CUL3 is new to the TPD field, here we report the first temporal and spatial characterization of CUL3-driven TPD with BTR2004. Our study revealed the target protein degradation kinetics, BTR2004 intracellular activity half-life, and the onset of BTR2004 cell permeabilization. Employing proximity ligation and confocal microscopy techniques, we also illustrate the subcellular location of the ternary complex assembly upon BTR2004 treatment. These characterizations provide further insight into the processes that govern TPD and features that could be incorporated into the design of future macrocyclic PROTAC molecules.
靶向蛋白质降解(TPD)是一种很有前景的方法,它利用内源性细胞蛋白质降解机制来降解选定的蛋白质。最近,我们通过开发一种合成大环配体来结合KLHL20,验证了CUL3 E3连接酶作为一种可用于TPD应用的新型可操作E3连接酶。将KLHL20配体与JQ1连接,我们创建了PROTAC分子BTR2004,它对BET家族蛋白BRD 2、3和4表现出有效的降解作用。由于CUL3在TPD领域是新的,在此我们报告了用BTR2004对CUL3驱动的TPD进行的首次时空表征。我们的研究揭示了靶蛋白降解动力学、BTR2004细胞内活性半衰期以及BTR2004细胞通透性的起始情况。利用邻近连接和共聚焦显微镜技术,我们还阐述了BTR2004处理后三元复合物组装的亚细胞定位情况。这些表征为控制TPD的过程以及可纳入未来大环PROTAC分子设计的特征提供了进一步的见解。