Edwards Madison E, Kar Nabojit, Freitas Dallas P, Zhang Lingjie, Wahab Oluwasegun J, Baker Lane A, Skrabalak Sara E, Yan Xin
Department of Chemistry, Texas A&M University, 580 Ross St., College Station, Texas 77843, United States.
Department of Chemistry, Indiana University-Bloomington, 800 E Kirkwood Ave., Bloomington, Indiana 47405, United States.
Anal Chem. 2025 Sep 16;97(36):19544-19551. doi: 10.1021/acs.analchem.5c02537. Epub 2025 Sep 2.
Nanoparticles exhibit unique catalytic properties that are highly dependent on their size and shape, influencing reaction rates, selectivity, and efficiency. Identifying the structural effects that achieve a high catalytic performance is critical to a wide range of applications, from energy conversion to environmental remediation. High-throughput screening (HTS) methods, particularly desorption electrospray ionization mass spectrometry (DESI-MS), offer a powerful approach for rapidly assessing the catalytic performance of nanoparticles with varying sizes and shapes. DESI-MS enables the direct analysis of reaction products without sample preparation, making it ideal for screening homogeneous catalytic reactions. However, applying this technique to heterogeneous catalysts remains challenging, and the lack of temperature control limits its ability to reflect realistic reaction conditions. In this article, we present the development of high-throughput variable-temperature DESI-MS (HT-vT-DESI-MS), a novel approach that combines DESI-MS with thin-film reaction acceleration and precise temperature control. This advancement allows the study of size and shape effects on nanoparticle-catalyzed reactions under varied conditions, offering a rapid understanding of structural parameters influencing catalytic performance. Our results show that varying the size of cubic Pd nanoparticles from 10 to 20 nm significantly impacts catalytic activity in Suzuki cross-coupling and indole arylation reactions, with distinct changes in both the effective surface area and Pd concentration. For both reactions, the reactivity trend normalized to the effective surface area was 10 nm cubic > 15 nm cubic > 20 nm cubic and normalized to the NP number was 20 nm cubic > 15 nm cubic > 10 nm cubic. Additionally, altering the nanoparticle shape from cubic to octahedral results in a marked decrease in product conversion, highlighting the critical role that nanoparticle morphology plays in determining catalytic efficiency. This research provides a HTS method for nanoparticle catalysts that can accelerate identification of design principles for their use in various catalytic applications.
纳米颗粒具有独特的催化性能,这高度依赖于它们的尺寸和形状,会影响反应速率、选择性和效率。确定实现高催化性能的结构效应对于从能量转换到环境修复等广泛应用至关重要。高通量筛选(HTS)方法,特别是解吸电喷雾电离质谱(DESI-MS),为快速评估不同尺寸和形状的纳米颗粒的催化性能提供了一种强大的方法。DESI-MS能够在无需样品制备的情况下直接分析反应产物,使其成为筛选均相催化反应的理想方法。然而,将该技术应用于多相催化剂仍然具有挑战性,并且缺乏温度控制限制了其反映实际反应条件的能力。在本文中,我们介绍了高通量可变温度DESI-MS(HT-vT-DESI-MS)的发展,这是一种将DESI-MS与薄膜反应加速和精确温度控制相结合的新方法。这一进展使得能够在不同条件下研究尺寸和形状对纳米颗粒催化反应的影响,从而快速了解影响催化性能的结构参数。我们的结果表明,将立方Pd纳米颗粒的尺寸从10纳米改变到20纳米会显著影响铃木交叉偶联反应和吲哚芳基化反应中的催化活性,有效表面积和Pd浓度都会发生明显变化。对于这两种反应,以有效表面积归一化的反应活性趋势为10纳米立方>15纳米立方>20纳米立方,以纳米颗粒数量归一化的反应活性趋势为20纳米立方>15纳米立方>10纳米立方。此外,将纳米颗粒形状从立方改变为八面体导致产物转化率显著降低,突出了纳米颗粒形态在决定催化效率方面的关键作用。这项研究为纳米颗粒催化剂提供了一种高通量筛选方法,能够加速确定其在各种催化应用中的设计原则。