Löffler Paul, Schymanski Emma L, Henschel Henning, Lai Foon Yin
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.P. Box 7050, SE-750 07 Uppsala, Sweden.
Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg.
Environ Sci Technol. 2025 Sep 16;59(36):19095-19106. doi: 10.1021/acs.est.5c06790. Epub 2025 Sep 2.
The characterization of transformation products (TPs) is crucial for understanding chemical fate and potential environmental hazards. TPs form through (a)biotic processes and can be detected in environmental concentrations comparable to or even exceeding their parent compounds, indicating toxicological relevance. However, identifying them is challenging due to the complexity of transformation processes and insufficient data. methods for predicting TP formation and toxicity are efficient and support prioritization for chemical risk assessment, yet require sufficient data for improved results. This perspective article explores the role of computational approaches in assessing TPs and their potential effects, including rule-based models, machine learning-based methods, and QSAR-based toxicity predictions, focusing on openly available tools. While integrating these approaches into computational workflows can support regulatory decision-making and prioritization strategies, predictive models can face limitations related to applicability domains, data biases, and mechanistic uncertainties. To better communicate the results of predictions, a framework of four distinct levels of confidence is proposed to support the integration of TP prediction and toxicity assessment into computational pipelines. This article highlights current advances, challenges, and future directions in applying methodologies for TP evaluation, emphasizing the need for more data and expert interpretation to enhance model reliability and regulatory applicability.
转化产物(TPs)的表征对于理解化学物质的归宿和潜在的环境危害至关重要。TPs通过(非)生物过程形成,并且可以在与它们的母体化合物相当甚至超过母体化合物的环境浓度中被检测到,这表明其具有毒理学相关性。然而,由于转化过程的复杂性和数据不足,识别它们具有挑战性。预测TP形成和毒性的方法是有效的,并有助于对化学风险评估进行优先级排序,但需要足够的数据以获得更好的结果。这篇观点文章探讨了计算方法在评估TPs及其潜在影响方面的作用,包括基于规则的模型、基于机器学习的方法和基于定量构效关系(QSAR)的毒性预测,重点关注公开可用的工具。虽然将这些方法整合到计算工作流程中可以支持监管决策和优先级排序策略,但预测模型可能面临与适用范围、数据偏差和机制不确定性相关的限制。为了更好地传达预测结果,提出了一个由四个不同置信水平组成的框架,以支持将TP预测和毒性评估整合到计算管道中。本文强调了应用TP评估方法的当前进展、挑战和未来方向,强调需要更多数据和专家解读以提高模型可靠性和监管适用性。