Suppr超能文献

用于预测新辅助治疗后乳腺癌缩小模式的瘤内微生物群相关MRI模型

Intratumoral Microbiome-related MRI Model for Predicting Breast Cancer Shrinkage Pattern Following Neoadjuvant Therapy.

作者信息

Huang Yuhong, Song Xinyang, Chen Yilin, Qiu Han, Zhou Tianhan, Wang Siqi, Zhou Yang, Li Wei, Lin Ying, Wang Qian, Gu Wenchao, Zhu Teng, Wang Kun

机构信息

Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510080, China.

Department of Radiology, First Affiliated Hospital of Jinan University, Guangzhou, China.

出版信息

Radiology. 2025 Aug;316(2):e243545. doi: 10.1148/radiol.243545.

Abstract

Background Patients with breast cancer exhibit different tumor shrinkage patterns (TSPs) after neoadjuvant therapy (NAT), making accurate TSP prediction essential for breast-conserving surgery planning. The intratumoral microbiome influences treatment response, and related imaging features may improve TSP prediction. Purpose To develop an intratumoral microbiome-related MRI model that accurately predicts TSP following NAT. Materials and Methods This retrospective study included patients with breast cancer who underwent NAT followed by surgery at 12 institutions between July 2015 and April 2023. Patients were allocated to training ( = 671), internal validation ( = 335), and external validation ( = 1243) sets. Pre-NAT and mid-NAT MRI scans were collected for model development and validation. Five models integrating three-dimensional U-Net automated segmentation, habitat radiomic and/or deep learning (ResNet-50) features, and histologic intratumoral microbiome data were developed: pre-NAT habitat, mid-NAT habitat, pre-NAT ResNet-50, mid-NAT ResNet-50, and a fusion model. Models were validated across molecular subtypes and tumor stages using receiver operating characteristic curves, confusion matrices, and diagnostic metrics. Shapley additive explanations were used to interpret model output. Results Among 2249 women with breast cancer (median age, 49 years [IQR, 42-56 years]), 1238 (55%) experienced concentric shrinkage. Tumors with concentric shrinkage had increased microbiome abundance ( < .001). The three-dimensional U-Net achieved Dice coefficients of 0.96, 0.92, and 0.91 on pre-NAT MRI scans and 0.96, 0.90, and 0.88 on mid-NAT MRI scans in the training, internal validation, and external validation sets, respectively. The fusion model outperformed single-time point models in the internal validation set (area under the receiver operating characteristic curve [AUC], 0.89 vs 0.80-0.83; all < .05) and external validation set (AUC, 0.87 vs 0.74-0.81; all < .001), remaining robust across molecular subtypes (AUC range, 0.85-0.91) and tumor stages (AUC range, 0.84-0.89). Shapley additive explanations confirmed that each imaging feature independently predicted TSP. Conclusion An intratumoral microbiome-related MRI model enabled precise TSP prediction. © The Author(s) 2025. Published by the Radiological Society of North America under a CC BY 4.0 license.

摘要

背景

乳腺癌患者在新辅助治疗(NAT)后表现出不同的肿瘤缩小模式(TSP),因此准确预测TSP对于保乳手术规划至关重要。肿瘤内微生物群会影响治疗反应,相关的影像特征可能会改善TSP预测。目的:开发一种与肿瘤内微生物群相关的MRI模型,以准确预测NAT后的TSP。材料与方法:这项回顾性研究纳入了2015年7月至2023年4月期间在12家机构接受NAT并随后接受手术的乳腺癌患者。患者被分配到训练集(n = 671)、内部验证集(n = 335)和外部验证集(n = 1243)。收集NAT前和NAT中期的MRI扫描图像用于模型开发和验证。开发了五个整合三维U-Net自动分割、栖息地放射组学和/或深度学习(ResNet-50)特征以及组织学肿瘤内微生物群数据的模型:NAT前栖息地模型、NAT中期栖息地模型、NAT前ResNet-50模型、NAT中期ResNet-50模型和一个融合模型。使用受试者操作特征曲线、混淆矩阵和诊断指标在分子亚型和肿瘤分期中对模型进行验证。使用Shapley加法解释来解释模型输出。结果:在2249例乳腺癌女性患者(中位年龄49岁[四分位间距,42 - 56岁])中,1238例(55%)经历了同心性缩小。同心性缩小的肿瘤微生物群丰度增加(P <.001)。在训练集、内部验证集和外部验证集中,三维U-Net在NAT前MRI扫描图像上的Dice系数分别为0.96、0.92和0.91,在NAT中期MRI扫描图像上分别为0.96、0.90和0.88。融合模型在内部验证集(受试者操作特征曲线下面积[AUC],0.89对0.80 - 0.83;所有P <.05)和外部验证集(AUC,0.87对0.74 - 0.81;所有P <.001)中优于单时间点模型,在分子亚型(AUC范围,0.85 - 0.91)和肿瘤分期(AUC范围,0.84 - 0.89)中均保持稳健。Shapley加法解释证实每个影像特征都能独立预测TSP。结论:一种与肿瘤内微生物群相关的MRI模型能够实现精确的TSP预测。©作者2025年。由北美放射学会根据CC BY 4.0许可发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验