Suppr超能文献

在用于肺通气应用的电动气路中,使用比例积分微分(PID)控制与模糊逻辑进行流量控制的评估。

Evaluation of flow control using PID versus fuzzy logic in an electropneumatic circuit for pulmonary ventilation applications.

作者信息

González Lina, Griffith Issa, Lescher Alfredo, Molino Jay, Rojas Asdrúal, Quijano Damián

机构信息

Centro I+D+i de Biotecnología, Energías Verdes y Cambio Climático (BEVCC), Laboratorio de Investigación Experimental de Bioseñales, Biomedical Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Albrook, Paseo de La Iguana, Panama.

Sistema Nacional de Investigación (SNI), SENACYT, Panama City, Republic of Panama.

出版信息

PLoS One. 2025 Sep 2;20(9):e0317809. doi: 10.1371/journal.pone.0317809. eCollection 2025.

Abstract

High-tech mechanical ventilators are engineered to deliver precise and consistent airflow, which is critical for effective respiratory therapy. This study evaluates flow control performance in a custom-built electro-pneumatic ventilator prototype, comparing Proportional-Integral-Derivative (PID) control with Fuzzy Logic Control (FLC) through real-time experiments on a test-lung platform to assess accuracy and adaptability under dynamic conditions. A laboratory based experimental study was conducted under laboratory conditions, using a test lung simulator and real-time flow data acquisition. The analysis included time-domain performance metrics and statistical validation through Bland-Altman analysis. Results indicate that both controllers meet the accuracy thresholds expected in commercial systems. However, the fuzzy logic controller exhibited narrower limits of agreement and lower standard deviation, indicating greater consistency. While PID control responded faster, with a settling time between 0.32 and 0.43 seconds, FLC achieved superior performance in high-demand scenarios, delivering an entire volume of 900 mL. Stability analysis using the Jury Test and Nyquist criteria confirmed that both systems are dynamically stable. Notably, the FLC curve in the Nyquist plot remained farther from the critical point (-1, 0j), indicating enhanced robustness against disturbances. These findings suggest that FLC may offer a reliable alternative to PID in nonlinear ventilation scenarios, particularly in resource-constrained environments seeking technological autonomy.

摘要

高科技机械通气机旨在提供精确且一致的气流,这对于有效的呼吸治疗至关重要。本研究评估了一种定制的电动气动通气机原型中的流量控制性能,通过在测试肺平台上进行实时实验,将比例积分微分(PID)控制与模糊逻辑控制(FLC)进行比较,以评估动态条件下的准确性和适应性。在实验室条件下,使用测试肺模拟器和实时流量数据采集进行了一项基于实验室的实验研究。分析包括时域性能指标和通过Bland-Altman分析进行的统计验证。结果表明,两种控制器均达到了商业系统预期的准确性阈值。然而,模糊逻辑控制器的一致性界限更窄,标准差更低,表明其具有更高的一致性。虽然PID控制响应更快,稳定时间在0.32至0.43秒之间,但FLC在高需求场景中表现更优,能够输送900毫升的全部容积。使用 Jury 测试和奈奎斯特准则进行的稳定性分析证实,两个系统在动态上都是稳定的。值得注意的是,奈奎斯特图中的FLC曲线离临界点(-1, 0j)更远,表明其对干扰的鲁棒性增强。这些发现表明,在非线性通气场景中,特别是在寻求技术自主性的资源受限环境中,FLC可能是PID的可靠替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c34/12404451/b91dde5ad707/pone.0317809.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验