Suppr超能文献

用于观测零膨胀计数的贝叶斯差异因果有向无环图及其在双样本单细胞数据中的应用

BAYESIAN DIFFERENTIAL CAUSAL DIRECTED ACYCLIC GRAPHS FOR OBSERVATIONAL ZERO-INFLATED COUNTS WITH AN APPLICATION TO TWO-SAMPLE SINGLE-CELL DATA.

作者信息

Choi Junsouk, Chapkin Robert S, Ni Yang

机构信息

Department of Statistics, Korea University.

Department of Nutrition, Texas A&M University.

出版信息

Ann Appl Stat. 2025 Sep;19(3):1908-1930. doi: 10.1214/25-aoas2042. Epub 2025 Aug 28.

Abstract

Observational zero-inflated count data arise in a wide range of areas such as genomics. One of the common research questions is to identify causal relationships by learning the structure of a sparse directed acyclic graph (DAG). While structure learning of DAGs has been an active research area, existing methods do not adequately account for excessive zeros and therefore are not suitable for modeling zero-inflated count data. Moreover, it is often interesting to study differences in the causal networks for data collected from two experimental groups (control vs treatment). To explicitly account for zero-inflation and identify differential causal networks, we propose a novel Bayesian differential zero-inflated negative binomial DAG (DAG0) model. We prove that the causal relationships under the proposed DAG0 are fully identifiable from purely observational, cross-sectional data, using a general proof technique that is applicable beyond the proposed model. Bayesian inference based on parallel-tempered Markov chain Monte Carlo is developed to efficiently explore the multi-modal posterior landscape. We demonstrate the utility of the proposed DAG0 by comparing it with state-of-the-art alternative methods through extensive simulations. An application in a single-cell RNA-sequencing dataset generated under two experimental groups finds some interesting results that appear to be consistent with existing knowledge. A user-friendly R package that implements DAG0 is available at https://github.com/junsoukchoi/BayesDAG0.git.

摘要

观测性零膨胀计数数据出现在基因组学等广泛领域。常见的研究问题之一是通过学习稀疏有向无环图(DAG)的结构来识别因果关系。虽然DAG的结构学习一直是一个活跃的研究领域,但现有方法没有充分考虑过多的零值,因此不适用于对零膨胀计数数据进行建模。此外,研究从两个实验组(对照组与处理组)收集的数据的因果网络差异通常很有趣。为了明确考虑零膨胀并识别差异因果网络,我们提出了一种新颖的贝叶斯差异零膨胀负二项式DAG(DAG0)模型。我们证明,使用一种适用于所提出模型之外的通用证明技术,可以从纯观测性横断面数据中完全识别所提出的DAG0下的因果关系。基于并行回火马尔可夫链蒙特卡罗的贝叶斯推断被开发出来,以有效地探索多模态后验分布。通过广泛的模拟将所提出的DAG0与最先进的替代方法进行比较,我们展示了其效用。在两个实验组下生成的单细胞RNA测序数据集中的应用发现了一些有趣的结果,这些结果似乎与现有知识一致。可在https://github.com/junsoukchoi/BayesDAG0.git上获得实现DAG0的用户友好型R包。

相似文献

本文引用的文献

5
DCI: learning causal differences between gene regulatory networks.DCI:学习基因调控网络之间的因果差异。
Bioinformatics. 2021 Sep 29;37(18):3067-3069. doi: 10.1093/bioinformatics/btab167.
7
Droplet scRNA-seq is not zero-inflated.液滴单细胞RNA测序不存在零膨胀问题。
Nat Biotechnol. 2020 Feb;38(2):147-150. doi: 10.1038/s41587-019-0379-5.
9
Bayesian inference of hub nodes across multiple networks.多个网络中枢纽节点的贝叶斯推理
Biometrics. 2019 Mar;75(1):172-182. doi: 10.1111/biom.12958. Epub 2018 Aug 23.
10
AhR signaling pathways and regulatory functions.芳香烃受体(AhR)信号通路与调控功能。
Biochim Open. 2018 Jun 11;7:1-9. doi: 10.1016/j.biopen.2018.05.001. eCollection 2018 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验