Santos Aila O, Silva Giulia K, Oliveira Hozana S C, C Huaman Noemi R, Soares André V H, Alves Odivaldo C, Silva Júlio César M
Departamento de Físico-Química, Instituto de Química, Universidade Federal Fluminense, Campus Valonguinho, 24020-141 Niterói, RJ, Brasil.
Centro Brasileiro de Pesquisas Físicas, Urca, 22290-180 Rio de Janeiro, RJ, Brasil.
ACS Omega. 2025 Aug 15;10(33):37830-37848. doi: 10.1021/acsomega.5c04822. eCollection 2025 Aug 26.
This study investigates the electrocatalytic activity of palladium (Pd) nanocatalysts combined with nanoparticles (NPs) of cerium oxide (CeO) polyhedra (Pd/CeO/C poly) and with morphologies of cube (Pd/CeO/C NC), hexagonal sheet (Pd/CeO/C NS), and nanorod (Pd/CeO/C NR) for the formate electrooxidation reaction (FER) in an alkaline medium, a key process in direct formate fuel cells (DFFCs). X-ray diffraction (XRD) patterns indicate that the CeO NP dislocation density follows the decreasing order of Pd/CeO/C NR > Pd/CeO/C NS > Pd/CeO/C NC > Pd/CeO/C poly. This order corresponds to the Pd concentration observed in X-ray photoelectron spectroscopy (XPS) data. Pd/CeO/C NR showed CeO NPs with compressive microstrain values, while the other materials presented tensile microstrain. Pd/CeO/C NR showed a higher amount of oxygen vacancies in XPS analysis. Transmission electron microscopy (TEM) micrographs showed Pd NPs surrounding and in close contact with CeO NPs. The average Pd NPS size was 4-10 nm, while CeO NC, CeO NS, and CeO poly showed 30, 15, and 50 nm, respectively. The length and width of CeO NR were 100 and 10 nm, respectively. Cyclic voltammetry (CV) demonstrates that Pd/CeO/C NR exhibits higher catalytic activity toward FER than the other materials studied (Pd/C, Pd/CeO/C NC, Pd/CeO/C NS, Pd/CeO/C poly). Chronoamperometric analysis (CA) shows that the current density from FER on Pd/CeO/C NR at the end of the experiment was 2.65 times higher than on Pd/C, while for Pd/CeO/C NC and Pd/CeO/C NS it was 1.45 and 1.13 times higher than on Pd/C. The enhanced catalytic activity of Pd/CeO/C NR results from the interaction between palladium and ceria, involving microstrain, oxygen vacancies, and metal-support interaction, facilitating polar adsorbate adsorption. This makes Pd/CeO/C NR a promising catalyst for direct formate fuel cell applications.
本研究考察了钯(Pd)纳米催化剂与氧化铈(CeO)多面体纳米颗粒(NPs)结合形成的立方体形态(Pd/CeO/C NC)、六边形片形态(Pd/CeO/C NS)和纳米棒形态(Pd/CeO/C NR)在碱性介质中对甲酸电氧化反应(FER)的电催化活性,该反应是直接甲酸燃料电池(DFFCs)中的关键过程。X射线衍射(XRD)图谱表明,CeO NP位错密度遵循Pd/CeO/C NR > Pd/CeO/C NS > Pd/CeO/C NC > Pd/CeO/C poly的递减顺序。该顺序与X射线光电子能谱(XPS)数据中观察到的Pd浓度相对应。Pd/CeO/C NR显示CeO NPs具有压缩微应变值,而其他材料呈现拉伸微应变。XPS分析表明Pd/CeO/C NR具有更高数量的氧空位。透射电子显微镜(TEM)显微照片显示Pd NPs围绕CeO NPs并与其紧密接触。Pd NPs的平均尺寸为4 - 10 nm,而CeO NC、CeO NS和CeO poly的尺寸分别为30、15和50 nm。CeO NR的长度和宽度分别为100和10 nm。循环伏安法(CV)表明,Pd/CeO/C NR对FER的催化活性高于所研究的其他材料(Pd/C、Pd/CeO/C NC、Pd/CeO/C NS、Pd/CeO/C poly)。计时电流分析(CA)表明,实验结束时,Pd/CeO/C NR上FER的电流密度比Pd/C上高2.65倍,而Pd/CeO/C NC和Pd/CeO/C NS上的电流密度分别比Pd/C上高1.45倍和1.13倍。Pd/CeO/C NR催化活性的增强源于钯与二氧化铈之间的相互作用,涉及微应变、氧空位和金属 - 载体相互作用,促进了极性吸附质的吸附。这使得Pd/CeO/C NR成为直接甲酸燃料电池应用中有前景的催化剂。