Divyamani M P, Hegde Sachin N, Naveen Kumar S K, Dharma Guru Prasad M P
Department of Electronics, Mangalore University, Mangalore 574199, India.
Department of Chemistry, Karnatak University, Dharwad 580003, India.
ACS Omega. 2025 Aug 15;10(33):38303-38310. doi: 10.1021/acsomega.5c07240. eCollection 2025 Aug 26.
The determination of cortisol is the most important aspect to monitor the stress level of human beings. Currently, cortisol levels are monitored through blood samples. However, multiple sampling and frequent monitoring are highly difficult. Few notable studies reveal the application of gas chromatography-mass spectroscopy (GC-MS) and liquid chromatography-mass spectroscopy (LC-MS) techniques for saliva cortisol quantification. Since quantification through GC-MS and LC-MS are not cost-effective and involves a tedious process of sample preparation, the development of appropriate quantification techniques for cortisol levels in saliva is much needed. In this work, we have reported the development of an electrochemical sensor modified with zinc nanoparticles on a glassy carbon electrode (GCE) to determine the cortisol level in saliva. The modification process involved electrodeposition of the ZnO nanoparticles on the surface of the GCE to form GCE (ZnO/GCE) at -1.0 V by the chronopotentiometric technique, followed by treatment with the 3-aminopropyltriethoxysilane (APTES) cross-linker in order to improve cortisol antibody (C-Mab) immobilization and stability (Zn-APT-AC). Employing different analytical tools, including a particle size analyzer, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), structural analyses of ZnO nanoparticles and antibody-loaded ZnO on a GCE were verified. To evaluate the electrochemical immunosensor behavior of the developed modified electrodes, the differential pulse voltammetry (DPV) electrochemical method was used. The immunosensor exhibited a steady, selective, and sensitive response at cortisol concentrations between 10 and 10 nM, in artificial saliva, at room temperature. These results indicate that the ZnO NP-modified GCE sensor could be a very promising candidate for saliva-based cortisol quantification.
皮质醇的测定是监测人类应激水平的最重要方面。目前,通过血液样本监测皮质醇水平。然而,多次采样和频繁监测非常困难。很少有显著的研究揭示气相色谱 - 质谱联用(GC-MS)和液相色谱 - 质谱联用(LC-MS)技术在唾液皮质醇定量分析中的应用。由于通过GC-MS和LC-MS进行定量分析成本效益不高且涉及繁琐的样品制备过程,因此迫切需要开发适用于唾液中皮质醇水平的定量技术。在这项工作中,我们报道了一种在玻碳电极(GCE)上用锌纳米颗粒修饰的电化学传感器的开发,用于测定唾液中的皮质醇水平。修饰过程包括通过计时电位法在-1.0 V下将ZnO纳米颗粒电沉积在GCE表面以形成GCE(ZnO/GCE),然后用3-氨丙基三乙氧基硅烷(APTES)交联剂处理,以改善皮质醇抗体(C-Mab)的固定化和稳定性(Zn-APT-AC)。使用不同的分析工具,包括粒度分析仪、傅里叶变换红外光谱(FT-IR)和扫描电子显微镜(SEM),验证了ZnO纳米颗粒和GCE上负载抗体的ZnO的结构分析。为了评估所开发的修饰电极的电化学免疫传感器行为,使用了差分脉冲伏安法(DPV)电化学方法。在室温下,该免疫传感器在人工唾液中对10至10 nM的皮质醇浓度表现出稳定、选择性和灵敏的响应。这些结果表明,ZnO纳米颗粒修饰的GCE传感器可能是基于唾液的皮质醇定量分析的非常有前途的候选者。