Suppr超能文献

亚碲酸盐的抗菌作用是通过细胞内酸化和镁离子紊乱实现的。

The antibacterial effect of tellurite is achieved through intracellular acidification and magnesium disruption.

作者信息

Peng Wanli, Fu Yali, Wang Yanqiu, Deng Zixin, Chen Daijie, Lin Shuangjun, Liang Rubing

机构信息

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China.

State Key Laboratory of Microbial Metabolism, School of Pharmaceutical Sciences Shanghai Jiao Tong University Shanghai China.

出版信息

mLife. 2025 Aug 24;4(4):423-436. doi: 10.1002/mlf2.70028. eCollection 2025 Aug.

Abstract

Antibiotic resistance has caused a severe reduction in bacteriostatic action and clinical therapy, demanding effective agents or strategies. Tellurite is an ancient yet powerful antimicrobial agent with an ambiguous mechanism. In this study, we uncovered the underlying action mechanism of tellurite by disturbing the cellular homeostasis of proton and metal ions. Tellurite, entering into MG1655 cells, synchronously imported excess protons and induced intracellular acidification. The intracellular pH declined upon exposure to 0.5 μg/ml of tellurite (the minimal inhibitory concentration, MIC) for 15 min, decreasing from 7.5 to 6.3 in 3 h. A dramatic decrease (31%-73%) in cellular magnesium contents and cytoplastic Mg levels occured early after a 5-min treatment with tellurite, primarily via the enhanced efflux by FocB/MdtL/MdtG and the reduced influx by MgtA/CorA. Disruption of cellular Mg homeostasis by tellurite severely hindered ribosome assembly, retarded protein synthesis, and disturbed cellular metabolism. This action logic was applicable to various pathogens. Furthermore, a combination of trace tellurite (0.01/0.1× MIC) synergistically augmented the efficacy of antibiotics at sublethal doses (0.5× MIC) against hypervirulent and drug-resistant bacterial strains in vitro and in vivo, significantly enhancing the survival rate and the wound-healing rate of infected animals. These discoveries regarding this metalloid present a promising perspective for combating stubborn and drug-resistant pathogens.

摘要

抗生素耐药性已导致抑菌作用和临床治疗严重下降,需要有效的药物或策略。亚碲酸盐是一种古老但强大的抗菌剂,其作用机制尚不明确。在本研究中,我们通过干扰质子和金属离子的细胞内稳态揭示了亚碲酸盐的潜在作用机制。亚碲酸盐进入MG1655细胞后,会同步导入过量质子并诱导细胞内酸化。暴露于0.5μg/ml亚碲酸盐(最低抑菌浓度,MIC)15分钟后,细胞内pH值下降,在3小时内从7.5降至6.3。用亚碲酸盐处理5分钟后,细胞内镁含量和细胞质镁水平早期显著下降(31%-73%),主要是通过FocB/MdtL/MdtG增强外排以及MgtA/CorA减少内流。亚碲酸盐破坏细胞内镁稳态严重阻碍核糖体组装,并延迟蛋白质合成,扰乱细胞代谢。这种作用逻辑适用于各种病原体。此外,微量亚碲酸盐(0.01/0.1×MIC)组合在体外和体内协同增强了亚致死剂量(0.5×MIC)抗生素对高毒力和耐药菌株的疗效,显著提高了感染动物的存活率和伤口愈合率。这些关于这种类金属的发现为对抗顽固和耐药病原体提供了一个有前景的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d855/12395589/7e7e18f2a838/MLF2-4-423-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验