Suppr超能文献

虚拟冠状动脉旁路移植术

Virtual Coronary Artery Bypass Grafting.

作者信息

Wu Wei, Patel Priyansh, Singh Parth Vikram, Zhao Shijia, Trivedi Yash Vardhan, Chikatimalla Rahul, Shaar Abdulkader, Vijayarao Sree Sindhu, Miriyala Varsha, Alam Muhammad Fiyaz, Munjal Parth, Bhat Rakshita Ramesh, Goswami Kanishka, Lee Changkye, Chatzizisi Ioanna, Brilakis Emmanouil S, Dangas George, Malik Shahbaz, Siddique Aleem, Chatzizisis Yiannis

机构信息

University of Miami Miller School of Medicine.

Minneapolis Heart Institute.

出版信息

Res Sq. 2025 Aug 22:rs.3.rs-7320100. doi: 10.21203/rs.3.rs-7320100/v1.

Abstract

Coronary artery bypass grafting (CABG) offers superior long-term survival over percutaneous coronary intervention (PCI) or medical therapy in patients with complex coronary artery disease (CAD). This prospective proof-of-concept study aims to develop and validate a non-invasive computational platform that integrates coronary computed tomographic angiography (CCTA) and computational fluid dynamics (CFD) to predict post-CABG hemodynamics, including virtual grafting and fractional flow reserve (FFR) estimation. Four patients with stable multi-vessel CAD undergoing elective CABG were included. Pre-CABG CCTA was used for 3D reconstruction of coronary anatomy. Virtual bypass grafting was performed using both patient-specific graft sizes, derived from post-operative imaging and mixed-specificity graft sizes using patient-specific LIMA and standardized non-LIMA graft sizes, derived from population averages. CFD simulations were used to estimate post-CABG FFR and validated against invasive FFR measurements. Computational FFR showed strong correlation with invasive FFR (patient-specific: r = 0.92; mixed-specificity: r = 0.88). Bland-Altman analysis demonstrated minimal bias (patient-specific: 0.006 ± 0.027; mixed-specificity: -0.007 ± 0.029). Agreement with invasive FFR was 90% for patient-specific grafts (κ = 0.74, = 0.016) and 80% for mixed-specificity grafts (κ = 0.41, = 0.107). This virtual CABG model represents a significant advancement over existing non-invasive systems by accurately predicting post-operative hemodynamics and FFR, offering potential to optimize graft strategies and reduce reliance on invasive FFR. Future studies should explore clinical integration and large-scale validation to enhance CABG surgical planning and improve patient outcomes.

摘要

对于患有复杂冠状动脉疾病(CAD)的患者,冠状动脉旁路移植术(CABG)在长期生存方面优于经皮冠状动脉介入治疗(PCI)或药物治疗。这项前瞻性概念验证研究旨在开发并验证一个非侵入性计算平台,该平台整合冠状动脉计算机断层血管造影(CCTA)和计算流体动力学(CFD),以预测CABG术后的血流动力学,包括虚拟移植和血流储备分数(FFR)估计。纳入了4例接受择期CABG的稳定多支血管CAD患者。术前CCTA用于冠状动脉解剖结构的三维重建。虚拟旁路移植使用根据术后影像得出的患者特异性移植物尺寸,以及使用患者特异性左内乳动脉(LIMA)和根据人群平均值得出的标准化非LIMA移植物尺寸的混合特异性移植物尺寸来进行。CFD模拟用于估计CABG术后的FFR,并与有创FFR测量结果进行验证。计算得出的FFR与有创FFR显示出很强的相关性(患者特异性:r = 0.92;混合特异性:r = 0.88)。布兰德-奥特曼分析显示偏差极小(患者特异性:0.006±0.027;混合特异性:-0.007±0.029)。患者特异性移植物与有创FFR的一致性为90%(κ = 0.74,P = 0.016),混合特异性移植物为80%(κ = 0.41,P = 0.107)。这个虚拟CABG模型通过准确预测术后血流动力学和FFR,代表了相对于现有非侵入性系统的重大进步,为优化移植策略和减少对有创FFR的依赖提供了潜力。未来的研究应探索临床整合和大规模验证,以加强CABG手术规划并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a58/12393576/dc3c1842bd3d/nihpp-rs7320100v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验