Peng Junhui, Zhao Li
bioRxiv. 2025 Aug 20:2025.08.15.670535. doi: 10.1101/2025.08.15.670535.
Proteins function through dynamic interactions with other proteins in cells, forming complex networks fundamental to cellular processes. While high-resolution and high-throughput methods have significantly advanced our understanding of how proteins interact with each other, the molecular details of many important protein-protein interactions are still poorly characterized, especially in non-mammalian species, including . Recent advancements in deep learning techniques have enabled the prediction of molecular details in various cellular pathways at the network level. In this study, we used AlphaFold2 multimer to examine and predict protein-protein interactions from both physical and functional datasets in . We found that functional associations contribute significantly to high-confidence predictions. Through detailed structural analysis, we also found the importance of intrinsically disordered regions in the predicted high-confidence interactions. Our study highlights the importance of disordered regions in protein-protein interactions and demonstrates the importance of incorporating functional interactions in predicting physical interactions between proteins. We further compiled an interactive web interface to present the predictions, facilitating functional exploration, comparative analysis, and the generation of mechanistic hypotheses for future studies.
蛋白质通过与细胞中其他蛋白质的动态相互作用发挥功能,形成细胞过程所必需的复杂网络。虽然高分辨率和高通量方法极大地推进了我们对蛋白质如何相互作用的理解,但许多重要蛋白质-蛋白质相互作用的分子细节仍未得到充分表征,尤其是在非哺乳动物物种中,包括 。深度学习技术的最新进展使得在网络层面预测各种细胞途径中的分子细节成为可能。在本研究中,我们使用AlphaFold2多聚体从 的物理和功能数据集中检测和预测蛋白质-蛋白质相互作用。我们发现功能关联对高置信度预测有显著贡献。通过详细的结构分析,我们还发现了内在无序区域在预测的高置信度相互作用中的重要性。我们的研究强调了无序区域在蛋白质-蛋白质相互作用中的重要性,并证明了在预测蛋白质之间的物理相互作用时纳入功能相互作用的重要性。我们进一步编制了一个交互式网络界面来展示预测结果,便于进行功能探索、比较分析以及为未来研究生成机制假说。