Suppr超能文献

AlphaFold-Multimer 能准确捕捉到无规卷曲蛋白区域的相互作用和动态。

AlphaFold-Multimer accurately captures interactions and dynamics of intrinsically disordered protein regions.

机构信息

Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

出版信息

Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2406407121. doi: 10.1073/pnas.2406407121. Epub 2024 Oct 24.

Abstract

Interactions mediated by intrinsically disordered protein regions (IDRs) pose formidable challenges in structural characterization. IDRs are highly versatile, capable of adopting diverse structures and engagement modes. Motivated by recent strides in protein structure prediction, we embarked on exploring the extent to which AlphaFold-Multimer can faithfully reproduce the intricacies of interactions involving IDRs. To this end, we gathered multiple datasets covering the versatile spectrum of IDR binding modes and used them to probe AlphaFold-Multimer's prediction of IDR interactions and their dynamics. Our analyses revealed that AlphaFold-Multimer is not only capable of predicting various types of bound IDR structures with high success rate, but that distinguishing true interactions from decoys, and unreliable predictions from accurate ones is achievable by appropriate use of AlphaFold-Multimer's intrinsic scores. We found that the quality of predictions drops for more heterogeneous, fuzzy interaction types, most likely due to lower interface hydrophobicity and higher coil content. Notably though, certain AlphaFold-Multimer scores, such as the Predicted Aligned Error and residue-ipTM, are highly correlated with structural heterogeneity of the bound IDR, enabling clear distinctions between predictions of fuzzy and more homogeneous binding modes. Finally, our benchmarking revealed that predictions of IDR interactions can also be successful when using full-length proteins, but not as accurate as with cognate IDRs. To facilitate identification of the cognate IDR of a given partner, we established "minD," which pinpoints potential interaction sites in a full-length protein. Our study demonstrates that AlphaFold-Multimer can correctly identify interacting IDRs and predict their mode of engagement with a given partner.

摘要

无序蛋白区域(IDR)介导的相互作用在结构表征方面带来了巨大的挑战。IDR 非常多样化,能够采用多种结构和结合模式。受蛋白质结构预测最近取得的进展的启发,我们开始探索 AlphaFold-Multimer 在多大程度上能够忠实地再现涉及 IDR 的相互作用的复杂性。为此,我们收集了多个涵盖 IDR 结合模式多样谱的数据集,并使用这些数据集来探测 AlphaFold-Multimer 对 IDR 相互作用及其动力学的预测。我们的分析表明,AlphaFold-Multimer 不仅能够以高成功率预测各种类型的结合 IDR 结构,而且通过适当利用 AlphaFold-Multimer 的固有得分,可以区分真实相互作用和诱饵,以及准确预测和不可靠预测。我们发现,对于更异质、模糊的相互作用类型,预测质量会下降,这很可能是由于界面疏水性降低和线圈含量增加所致。然而,值得注意的是,某些 AlphaFold-Multimer 得分,如预测对齐误差和残基-ipTM,与结合 IDR 的结构异质性高度相关,能够清晰地区分模糊和更均匀的结合模式的预测。最后,我们的基准测试表明,当使用全长蛋白时,也可以成功预测 IDR 相互作用,但不如同源 IDR 准确。为了促进识别给定伴侣的同源 IDR,我们建立了“minD”,它可以在全长蛋白中确定潜在的相互作用位点。我们的研究表明,AlphaFold-Multimer 可以正确识别相互作用的 IDR 并预测它们与给定伴侣的结合模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e70c/11536093/9017f7350a37/pnas.2406407121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验