Dave Janam J, Crawford Sue E, Atmar Robert L, Ettayebi Khalil, Prasad B V Venkataram, Estes Mary K
bioRxiv. 2025 Aug 23:2025.08.23.671901. doi: 10.1101/2025.08.23.671901.
Human noroviruses ( s) are the leading cause of viral gastroenteritis with ≥80% of infections caused by the GII genogroup. HuNoVs are non-enveloped, with an icosahedral capsid composed of 90 dimers of the major capsid protein VP1, which encloses a minor structural protein, VP2, and a VPg-linked positive sense ssRNA genome. Although the atomic structure of the icosahedral capsid formed by VP1 is well characterized using crystallography and cryo-electron microscopy analyses of HuNoV virus-like particles (VLPs), the structures and the localization of VP2 and VPg inside the capsid, how they are incorporated into the capsid, and whether this process requires interactions between them remain unresolved. Herein, we show VP2 is the molecular bridge for assembly of particles containing VP1, VP2 and VPg. We used deletion constructs and mutational analyses, guided by bioinformatic analyses, to determine the interaction site on VP2 for VP1 of the pandemic-causing GII.4 Sydney HuNoV. GII.4 HuNoV VP2 contains a unique insertion site at amino acids (AAs) 43-53, relative to VP2s of other GII HuNoV genotypes. We identified AA residues 40-43 on VP2 are required for interaction with VP1; mutation of VP2 AA 40-43 abrogates VP2 encapsidation. Computational analyses predicted VP2 has a highly conserved N-terminal α-helical domain and an intrinsically disordered C-terminal domain that exhibits significant sequence diversity. We identified VP2, not VP1, uniquely binds VPg; the VP2 C-terminal domain is sufficient to interact with VPg. These findings reveal domain-specific functions of VP2 that are essential for coordinating capsid protein interactions for HuNoV assembly.
Human noroviruses (HuNoVs) are the leading cause of epidemic and sporadic gastroenteritis in all age groups worldwide. Yet, we currently lack vaccines or therapeutics for these pathogens. Knowledge about HuNoV biology is limited, including the fundamental mechanisms governing particle assembly. Modern structural techniques have not resolved the complete structure of pandemic GII.4 norovirus that includes the localization of the interior capsid proteins VP2 and VPg. Furthermore, VP2's functional role(s) during infection remains obscure. Studies of feline and murine caliciviruses show VP2 may be involved in delivering the viral genome into cells, suggesting it synergizes with VP1 and VPg. We identify a motif on the N-terminal α-helical domain of VP2, adjacent to a unique insertion site, that is essential for interaction with the major capsid protein VP1. We show VP2 uniquely binds the translation initiation protein, VPg, via its disordered C-terminus. These findings reveal principles of HuNoV capsid protein interactions and highlight VP2 as a bridge facilitating capsid assembly.
人诺如病毒是病毒性肠胃炎的主要病因,其中≥80%的感染由GII基因组引起。人诺如病毒无包膜,其二十面体衣壳由主要衣壳蛋白VP1的90个二聚体组成,衣壳内包裹着次要结构蛋白VP2和与VPg相连的正链单链RNA基因组。尽管通过人诺如病毒样颗粒(VLP)的晶体学和冷冻电子显微镜分析,由VP1形成的二十面体衣壳的原子结构已得到很好的表征,但VP2和VPg在衣壳内的结构和定位、它们如何被纳入衣壳以及该过程是否需要它们之间的相互作用仍未解决。在此,我们表明VP2是组装包含VP1、VP2和VPg的颗粒的分子桥梁。我们在生物信息学分析的指导下,使用缺失构建体和突变分析来确定大流行的GII.4悉尼人诺如病毒的VP1与VP2上的相互作用位点。相对于其他GII人诺如病毒基因型的VP2,GII.4人诺如病毒VP2在氨基酸(AA)43 - 53处含有一个独特的插入位点。我们确定VP2上的AA残基40 - 43是与VP1相互作用所必需的;VP2的AA 40 - 43突变会消除VP2的衣壳化。计算分析预测VP2具有高度保守的N端α螺旋结构域和一个具有显著序列多样性的内在无序C端结构域。我们确定是VP2而非VP1独特地结合VPg;VP2的C端结构域足以与VPg相互作用。这些发现揭示了VP2的结构域特异性功能,这些功能对于协调人诺如病毒组装的衣壳蛋白相互作用至关重要。
人诺如病毒是全球所有年龄组中流行性和散发性肠胃炎的主要病因。然而,我们目前缺乏针对这些病原体的疫苗或治疗方法。关于人诺如病毒生物学的知识有限,包括控制颗粒组装的基本机制。现代结构技术尚未解析大流行的GII.4诺如病毒的完整结构,包括内部衣壳蛋白VP2和VPg的定位。此外,VP2在感染过程中的功能作用仍不清楚。对猫和小鼠杯状病毒的研究表明,VP2可能参与将病毒基因组递送至细胞中,这表明它与VP1和VPg协同作用。我们在VP2的N端α螺旋结构域上鉴定出一个基序,该基序与一个独特的插入位点相邻,对于与主要衣壳蛋白VP1的相互作用至关重要。我们表明VP2通过其无序的C末端独特地结合翻译起始蛋白VPg。这些发现揭示了人诺如病毒衣壳蛋白相互作用的原理,并突出了VP2作为促进衣壳组装的桥梁的作用。