Ruetten Virginia M S, Zheng Wei, Siwanowicz Igor, Mensh Brett D, Eddison Mark, Hu Amy, Chi Yunfeng, Lemire Andrew L, Guo Caiying, Kadobianskyi Mykola, Renz Marc, Lelek-Greskovic Sara, He Yisheng, Close Kari, Ihrke Gudrun, Dev Aparna, Petruncio Alyson, Wan Yinan, Engert Florian, Fishman Mark C, Judkewitz Benjamin, Rubinov Mikail, Keller Philipp J, Satou Chie, Yu Guoqiang, Tillberg Paul W, Sahani Maneesh, Ahrens Misha B
bioRxiv. 2025 Aug 22:2025.08.20.670374. doi: 10.1101/2025.08.20.670374.
All cells in an animal collectively ensure, moment-to-moment, the survival of the whole organism in the face of environmental stressors . Physiology seeks to elucidate the intricate network of interactions that sustain life, which often span multiple organs, cell types, and timescales, but a major challenge lies in the inability to simultaneously record time-varying cellular activity throughout the entire body. We developed WHOLISTIC, a method to image second-timescale, time-varying intracellular dynamics across cell-types of the vertebrate body. By advancing and integrating volumetric fluorescence microscopy, machine learning, and pancellular transgenic expression of calcium sensors in transparent young (zebrafish) and adult , the method enables real-time recording of cellular dynamics across the organism. Calcium is a universal intracellular messenger, with a large array of cellular processes depending on changes in calcium concentration across varying time-scales, making it an ideal proxy of cellular activity . Using this platform to screen the dynamics of all cells in the body, we discovered unexpected responses of specific cell types to stimuli, such as chondrocyte reactions to cold, meningeal responses to ketamine, and state-dependent activity, such as oscillatory ependymal-cell activity during periods of extended motor quiescence. At the organ scale, the method uncovered pulsating traveling waves along the kidney nephron. At the multi-organ scale, we uncovered muscle synergies and independencies, as well as muscle-organ interactions. Integration with optogenetics allowed us to all-optically determine the causal direction of brain-body interactions. At the whole-organism scale, the method captured the rapid brainstem-controlled redistribution of blood flow across the body. Finally, we advanced Whole-Body Expansion Microscopy to provide ground-truth molecular and ultrastructural anatomical context, explaining the spatiotemporal structure of activity captured by WHOLISTIC. Together, these innovations establish a new paradigm for systems biology, bridging cellular and organismal physiology, with broad implications for both fundamental research and drug discovery.
动物体内的所有细胞共同作用,时刻确保整个生物体在面对环境应激源时的生存。生理学旨在阐明维持生命的复杂相互作用网络,这些相互作用通常跨越多个器官、细胞类型和时间尺度,但一个主要挑战在于无法同时记录整个身体随时间变化的细胞活动。我们开发了WHOLISTIC,这是一种用于成像脊椎动物身体不同细胞类型中秒级随时间变化的细胞内动态的方法。通过推进和整合体积荧光显微镜、机器学习以及在透明幼体(斑马鱼)和成体中钙传感器的全细胞转基因表达,该方法能够实时记录整个生物体的细胞动态。钙是一种通用的细胞内信使,大量细胞过程取决于不同时间尺度上钙浓度的变化,使其成为细胞活动的理想指标。利用这个平台筛选体内所有细胞的动态,我们发现了特定细胞类型对刺激的意外反应,例如软骨细胞对寒冷的反应、脑膜对氯胺酮的反应以及状态依赖性活动,如在长时间运动静止期间室管膜细胞的振荡活动。在器官尺度上,该方法揭示了沿肾单位的脉动行波。在多器官尺度上,我们发现了肌肉协同作用和独立性,以及肌肉与器官之间的相互作用。与光遗传学的结合使我们能够通过全光学方法确定脑 - 体相互作用的因果方向。在整个生物体尺度上,该方法捕捉到了脑干控制的全身血流快速重新分布。最后,我们改进了全身扩展显微镜,以提供真实的分子和超微结构解剖背景,解释WHOLISTIC捕获的活动的时空结构。总之,这些创新为系统生物学建立了一个新范式,弥合了细胞生理学和生物体生理学之间的差距,对基础研究和药物发现都具有广泛的意义。