Suppr超能文献

在斑马鱼幼虫中进行神经活性药物的深度表型分析。

Deep phenotypic profiling of neuroactive drugs in larval zebrafish.

机构信息

Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.

UCSF Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, CA, USA.

出版信息

Nat Commun. 2024 Nov 17;15(1):9955. doi: 10.1038/s41467-024-54375-y.

Abstract

Behavioral larval zebrafish screens leverage a high-throughput small molecule discovery format to find neuroactive molecules relevant to mammalian physiology. We screen a library of 650 central nervous system active compounds in high replicate to train deep metric learning models on zebrafish behavioral profiles. The machine learning initially exploited subtle artifacts in the phenotypic screen, necessitating a complete experimental re-run with rigorous physical well-wise randomization. These large matched phenotypic screening datasets (initial and well-randomized) provide a unique opportunity to quantify and understand shortcut learning in a full-scale, real-world drug discovery dataset. The final deep metric learning model substantially outperforms correlation distance-the canonical way of computing distances between profiles-and generalizes to an orthogonal dataset of diverse drug-like compounds. We validate predictions by prospective in vitro radio-ligand binding assays against human protein targets, achieving a hit rate of 58% despite crossing species and chemical scaffold boundaries. These neuroactive compounds exhibit diverse chemical scaffolds, demonstrating that zebrafish phenotypic screens combined with metric learning achieve robust scaffold hopping capabilities.

摘要

行为学幼鱼斑马鱼筛选利用高通量小分子发现格式来寻找与哺乳动物生理学相关的神经活性分子。我们以高重复的方式筛选了 650 种中枢神经系统活性化合物库,以在斑马鱼行为特征上训练深度度量学习模型。机器学习最初利用了表型筛选中的细微伪影,因此需要对实验进行彻底的重新运行,并进行严格的物理 wise 随机化。这些大型匹配表型筛选数据集(初始数据集和随机数据集)为在全规模、真实世界的药物发现数据集中量化和理解捷径学习提供了独特的机会。最终的深度度量学习模型大大优于相关距离(计算特征之间距离的典型方法),并可推广到不同类药性化合物的正交数据集。我们通过针对人类蛋白靶标的前瞻性体外放射性配体结合测定来验证预测,尽管跨越了物种和化学支架边界,仍达到了 58%的命中率。这些神经活性化合物具有不同的化学支架,表明斑马鱼表型筛选与度量学习相结合可实现强大的支架跳跃能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bae/11570628/0b582d53a922/41467_2024_54375_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验