Suppr超能文献

通过中红外量子级联激光光谱监测活细胞中的共价药物结合:以光活性黄色蛋白为模型系统

Covalent Drug Binding in Live Cells Monitored by Mid-IR Quantum Cascade Laser Spectroscopy: Photoactive Yellow Protein as a Model System.

作者信息

Mukherjee Srijit, Fried Steven D E, Hong Nathalie Y, Bagheri Nahal, Kozuch Jacek, Mathews Irimpan I, Kirsh Jacob M, Boxer Steven G

机构信息

Department of Chemistry, Stanford University, Stanford CA 94305, USA.

Department of Electrical Engineering, Stanford University, Stanford CA 94305, USA.

出版信息

bioRxiv. 2025 Aug 19:2025.08.15.670201. doi: 10.1101/2025.08.15.670201.

Abstract

The detection of drug-target interactions in live cells enables analysis of therapeutic compounds in a native cellular environment. Recent advances in spectroscopy and molecular biology have facilitated the development of genetically encoded vibrational probes like nitriles that can sensitively report on molecular interactions. Nitriles are powerful tools for measuring electrostatic environments within condensed media like proteins, but such measurements in live cells have been hindered by low signal-to-noise ratios. In this study, we design a spectrometer based on a double-beam quantum cascade laser (QCL)-based transmission infrared (IR) source with balanced detection that can significantly enhance sensitivity to nitrile vibrational probes embedded in proteins within cells compared to a conventional FTIR spectrometer. Using this approach, we detect small-molecule binding in , with particular focus on the interaction between para-coumaric acid (pCA) and nitrile-incorporated photoactive yellow protein (PYP). This system effectively serves as a model for investigating covalent drug binding in a cellular environment. Notably, we observe large spectral shifts of up to 15 cm for nitriles embedded in PYP between the unbound and drug-bound states directly within bacteria, in agreement with observations for purified proteins. Such large spectral shifts are ascribed to the changes in the hydrogen-bonding environment around the local environment of nitriles, accurately modeled through high-level molecular dynamics simulations using the AMOEBA force field. Our findings underscore the QCL spectrometer's ability to enhance sensitivity for monitoring drug-protein interactions, offering new opportunities for advanced methodologies in drug development and biochemical research.

摘要

在活细胞中检测药物-靶点相互作用能够在天然细胞环境中分析治疗性化合物。光谱学和分子生物学的最新进展推动了如腈类等基因编码振动探针的发展,这些探针能够灵敏地报告分子间相互作用。腈类是测量蛋白质等凝聚介质中静电环境的有力工具,但在活细胞中的此类测量一直受到低信噪比的阻碍。在本研究中,我们设计了一种基于双光束量子级联激光器(QCL)的透射红外(IR)源并采用平衡检测的光谱仪,与传统傅里叶变换红外光谱仪相比,它能显著提高对细胞内蛋白质中嵌入的腈类振动探针的灵敏度。利用这种方法,我们检测了[具体内容缺失]中的小分子结合,特别关注对香豆酸(pCA)与掺入腈类的光活性黄色蛋白(PYP)之间的相互作用。该系统有效地成为了在细胞环境中研究共价药物结合的模型。值得注意的是,我们直接在细菌内观察到,未结合态和药物结合态之间,PYP中嵌入的腈类有高达15厘米的大光谱位移,这与纯化蛋白质的观察结果一致。这种大光谱位移归因于腈类局部环境周围氢键环境的变化,通过使用AMOEBA力场的高级分子动力学模拟能够准确模拟。我们的研究结果强调了QCL光谱仪在增强监测药物-蛋白质相互作用灵敏度方面的能力,为药物开发和生化研究中的先进方法提供了新机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/12393337/4951365eb033/nihpp-2025.08.15.670201v1-f0001.jpg

本文引用的文献

2
Quantum theory of stimulated Raman scattering microscopy.
Chem Phys Rev. 2025 Jun;6(2):021306. doi: 10.1063/5.0248085. Epub 2025 May 27.
3
Photochemistry of Receptor-Bound Flavin Resolved in Living Human Cells by Infrared Spectroscopy.
J Am Chem Soc. 2025 Mar 19;147(11):9676-9685. doi: 10.1021/jacs.4c17815. Epub 2025 Mar 7.
4
Beyond the Vibrational Stark Effect: Unraveling the Large Redshifts of Alkyne C-H Bond in Solvation Environments.
J Am Chem Soc. 2025 Feb 19;147(7):6227-6235. doi: 10.1021/jacs.4c18102. Epub 2025 Feb 10.
5
Hydrogen Bond Blueshifts in Nitrile Vibrational Spectra Are Dictated by Hydrogen Bond Geometry and Dynamics.
JACS Au. 2024 Dec 5;4(12):4844-4855. doi: 10.1021/jacsau.4c00811. eCollection 2024 Dec 23.
6
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.
7
Fluorescent non-canonical amino acid provides insight into the human serotonin transporter.
Nat Commun. 2024 Oct 27;15(1):9267. doi: 10.1038/s41467-024-53584-9.
8
Environment- and Conformation-Induced Frequency Shifts of C-D Vibrational Stark Probes in NAD(P)H Cofactors.
J Phys Chem Lett. 2024 Oct 31;15(43):10826-10834. doi: 10.1021/acs.jpclett.4c02497. Epub 2024 Oct 22.
9
Single molecule tracking based drug screening.
Nat Commun. 2024 Oct 17;15(1):8975. doi: 10.1038/s41467-024-53432-w.
10
Isotope Reverse-Labeled Infrared Spectroscopy as a Probe of In-Cell Protein Structure.
J Phys Chem B. 2024 Oct 17;128(41):9923-9934. doi: 10.1021/acs.jpcb.4c03068. Epub 2024 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验