Liao Wenxin, Wang Haohan, Fan Heling, Chen Jie, Yin Lili, Cai Xiaoyang, Li Min
Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Sichuan Research Center for Demonstration Project of Entire Industrial Chain of Genuine Medicinal Materials, Chengdu, China.
PeerJ. 2025 Aug 28;13:e19933. doi: 10.7717/peerj.19933. eCollection 2025.
In China, L. is primarily cultivated for its underground parts-rhizomes (commonly known as turmeric) and tubers (Yujin), with the latter holding greater market value. However, current cultivation practices in China remain largely traditional, lacking scientific optimization in nutrient management, growth cycle alignment, or soil fertility strategies. This study aims to establish a scientific foundation for precision fertilization by investigating the dynamic patterns of dry matter accumulation and nutrient distribution in multiple plant organs throughout the growth cycle.
The experiment was conducted in Shuangliu, Sichuan Province, a key production area for in China. From 55 to 209 days after planting (DAP), nine sampling points representing different phenological stages were selected. At each stage, we systematically monitored the accumulation of dry matter and the distribution of nine essential nutrient elements-nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn)-across five plant organs: leaves, stems, rhizomes, tubers, and roots.
The total dry matter accumulation in followed a typical S-shaped curve, reaching its peak at 195 DAP. Resource allocation patterns varied across four distinct growth stages. Before October (0-111 DAP), the aboveground parts dominated, with leaves and stems comprising 62.73% to 79.30% of the total dry mass. After October (111-195 DAP), underground development intensified, with priority given to the rhizomes and tubers. By late December (195 DAP), dry matter in the tubers peaked, and by early January (209 DAP), over 70% of the total dry mass was allocated below ground. Nutrient uptake also showed distinct temporal patterns. Total accumulation of nutrients in mature plants was as follows: K (1,492.39 mg), N (1,198.81 mg), P (396.98 mg), Ca (339.51 mg), Mg (210.63 mg), Fe (15.17 mg), Zn (1.15 mg), Mn (0.69 mg), and Cu (0.25 mg). The relative nutrient demand ranked as follows: K > N > P (macronutrients), Ca > Mg (secondary nutrients), and Fe > Zn > Mn > Cu (micronutrients).
The growth and development of depend on sufficient uptake of potassium and nitrogen, moderate amounts of phosphorus, calcium, and magnesium, and trace amounts of iron, zinc, manganese, and copper-of which potassium is required in the greatest quantity. These findings highlight the importance of adopting a stage-specific fertilization strategy to align with the plant's shifting nutrient demands throughout its life cycle.
在中国,姜黄主要因其地下部分——根茎(俗称姜黄)和块茎(郁金)而被种植,其中块茎具有更高的市场价值。然而,中国目前的种植方式在很大程度上仍较为传统,在养分管理、生长周期协调或土壤肥力策略方面缺乏科学优化。本研究旨在通过调查整个生长周期内多种植物器官中干物质积累和养分分配的动态模式,为精准施肥建立科学基础。
该实验在四川省双流区进行,此地是中国姜黄的关键产区。在种植后55至209天内,选取了代表不同物候期的9个采样点。在每个阶段,我们系统地监测了5个植物器官(叶、茎、根茎、块茎和根)中干物质的积累以及9种必需营养元素(氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、铁(Fe)、锰(Mn)、铜(Cu)和锌(Zn))的分配情况。
姜黄的总干物质积累遵循典型的S形曲线,在种植后195天达到峰值。资源分配模式在四个不同的生长阶段有所不同。10月之前(0至111天),地上部分占主导,叶和茎占总干质量的62.73%至79.30%。10月之后(111至195天),地下发育加强,优先发展根茎和块茎。到12月底(195天),块茎中的干物质达到峰值,到1月初(209天),超过70%的总干质量分配到地下。养分吸收也呈现出明显的时间模式。成熟植株中养分的总积累量如下:钾(1492.39毫克)、氮(1198.81毫克)、磷(396.98毫克)、钙(339.51毫克)、镁(210.63毫克)、铁(15.17毫克)、锌(1.15毫克)、锰(0.69毫克)和铜(0.25毫克)。相对养分需求排名如下:钾>氮>磷(大量元素),钙>镁(中量元素),铁>锌>锰>铜(微量元素)。
姜黄的生长发育依赖于充足吸收钾和氮、适量的磷、钙和镁以及微量的铁、锌、锰和铜,其中钾的需求量最大。这些发现凸显了采用特定阶段施肥策略以适应植物在其生命周期中不断变化的养分需求的重要性。