Suppr超能文献

基于机器学习的子宫腺肌病高强度聚焦超声治疗所需能效因素的预测分析。

Machine learning-based predictive analysis of energy efficiency factors necessary for the HIFU treatment of adenomyosis.

作者信息

Liu Ziyan, Liu Ziyi, Wang Yuan, Wan Xiyao, Huang Xiaohua

机构信息

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.

出版信息

Front Physiol. 2025 Aug 15;16:1602866. doi: 10.3389/fphys.2025.1602866. eCollection 2025.

Abstract

PURPOSE

This study aimed to develop a joint model combining T2-weighted imaging (T2WI) suppressed fat radiomics, and clinical parameters to predict the energy efficiency factor (EEF) required for high-intensity focused ultrasound (HIFU) ablation in patients with adenomyosis.

MATERIALS AND METHODS

This retrospective study included 169 adenomyosis patients who underwent HIFU ablation between September 2021 and May 2024. EEF values were calculated based on T2WI fat suppression (T2WI-FS) sequences, and radiomics features were extracted. Predictive features were selected using minimum redundancy maximum relevance (MRMR) and least absolute shrinkage and selection operator (LASSO) methods, and two joint-based on decision tree and random forest algorithms-models were developed for EEF prediction.

RESULTS

The decision tree model achieved a mean absolute error (MAE) of 8.095 on the test set, while the random forest model exhibited an MAE of 8.231. The Wilcoxon rank-sum test for the test set revealed that the discrepancy in predictive performance between the two models was statistically significant ( < 0.05). The correlation coefficients were 0.768 and 0.777, and the coefficients of the two models in the test set were 0.559 and 0.549, respectively.

CONCLUSION

The joint model integrating T2WI radiomics and clinical data effectively predicted EEF values for HIFU ablation in adenomyosis. This approach provides a foundation for optimizing HIFU dosing strategies and enhancing treatment safety and efficacy.

摘要

目的

本研究旨在开发一种联合模型,该模型结合T2加权成像(T2WI)脂肪抑制放射组学和临床参数,以预测子宫腺肌病患者高强度聚焦超声(HIFU)消融所需的能量效率因子(EEF)。

材料与方法

这项回顾性研究纳入了2021年9月至2024年5月期间接受HIFU消融的169例子宫腺肌病患者。基于T2WI脂肪抑制(T2WI-FS)序列计算EEF值,并提取放射组学特征。使用最小冗余最大相关性(MRMR)和最小绝对收缩和选择算子(LASSO)方法选择预测特征,并开发了基于决策树和随机森林算法的两个联合模型用于EEF预测。

结果

决策树模型在测试集上的平均绝对误差(MAE)为8.095,而随机森林模型的MAE为8.231。对测试集进行的Wilcoxon秩和检验显示,两个模型在预测性能上的差异具有统计学意义(<0.05)。相关系数分别为0.768和0.777,两个模型在测试集上的 系数分别为0.559和0.549。

结论

整合T2WI放射组学和临床数据的联合模型有效地预测了子宫腺肌病患者HIFU消融的EEF值。这种方法为优化HIFU剂量策略以及提高治疗安全性和有效性提供了基础。

相似文献

本文引用的文献

1
Conservative surgical treatment for adenomyosis: New options for looking beyond uterus removal.保守手术治疗子宫腺肌病:超越子宫切除的新选择。
Best Pract Res Clin Obstet Gynaecol. 2024 Jul;95:102507. doi: 10.1016/j.bpobgyn.2024.102507. Epub 2024 May 31.
3
Guideline No. 437: Diagnosis and Management of Adenomyosis.指南第 437 号:子宫腺肌病的诊断与管理。
J Obstet Gynaecol Can. 2023 Jun;45(6):417-429.e1. doi: 10.1016/j.jogc.2023.04.008.
6
The Asian perspective on HIFU.亚洲视角下的高强度聚焦超声(HIFU)。
Int J Hyperthermia. 2021 Sep;38(2):5-8. doi: 10.1080/02656736.2021.1889697.
10
Imaging Diagnosis of Adenomyosis.子宫腺肌病的影像学诊断。
Semin Reprod Med. 2020 May;38(2-03):119-128. doi: 10.1055/s-0040-1719017. Epub 2020 Nov 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验