Zhai Hao, Gao Hengjiao, Li Wei
School of Instrumentation and Optoelectronic Engineering, Beihang University Beijing 100191 China
Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics Lanzhou 730000 Gansu Province China
RSC Adv. 2025 Aug 28;15(37):30758-30767. doi: 10.1039/d5ra01627d. eCollection 2025 Aug 22.
To investigate the anti-relaxation performance of FOTS-modified OTS coatings on the inner walls of cesium (Cs) atomic cell, this study employs molecular dynamics (MD) simulations to explore the self-assembly process of FOTS-modified OTS molecular chains on the SiO (001) surface and evaluates the effects of FOTS chain amounts, water molecule content, and temperature on the diffusion behavior of Cs atoms. Results show that the optimized interface model of the FOTS-modified OTS coating and SiO substrate achieves thermodynamic and energetic equilibrium under the conditions of 25 °C and 2000 ps. The film formation process of FOTS-modified OTS chains on SiO surfaces involves three distinct stages: initial anchoring, conformational rearrangement, and structural relaxation and equilibrium configuration. The molecular chains evolve from an initial perpendicular orientation into a final stable configuration parallel to the substrate surface. Increasing the FOTS content effectively reduces the diffusion coefficient of Cs atoms. The optimal OTS : FOTS blending ratio is identified as 20 : 8, yielding a minimum diffusion coefficient of 0.204 × 10 cm s. Water molecules exhibit a significant influence on Cs diffusion dynamics. As the water content increases from 1 to 20, the diffusion coefficient rises from 0.271 × 10 cm s to 2.387 × 10 cm s. Additionally, the mobility of Cs atoms displays a non-monotonic dependence on temperature, where the diffusion coefficient initially decreases and then increases with rising temperature, reaching a minimum value of 0.172 × 10 cm s at 80 °C. These findings provide theoretical guidance for the design, optimization, and fabrication of high-performance anti-relaxation coatings for Cs atomic vapor cell applications.
为了研究氟代十八烷基三甲氧基硅烷(FOTS)改性的十八烷基三甲氧基硅烷(OTS)涂层在铯(Cs)原子池内壁上的抗弛豫性能,本研究采用分子动力学(MD)模拟来探索FOTS改性的OTS分子链在SiO(001)表面的自组装过程,并评估FOTS链数量、水分子含量和温度对Cs原子扩散行为的影响。结果表明,FOTS改性的OTS涂层与SiO衬底的优化界面模型在25℃和2000皮秒的条件下实现了热力学和能量平衡。FOTS改性的OTS链在SiO表面的成膜过程包括三个不同阶段:初始锚固、构象重排以及结构弛豫和平衡构型。分子链从初始的垂直取向演变为平行于衬底表面的最终稳定构型。增加FOTS含量有效地降低了Cs原子的扩散系数。确定最佳的OTS : FOTS混合比例为20 : 8,产生的最小扩散系数为0.204×10厘米²/秒。水分子对Cs扩散动力学有显著影响。随着水含量从1增加到20,扩散系数从0.271×10厘米²/秒上升到2.387×10厘米²/秒。此外,Cs原子的迁移率对温度呈现非单调依赖性,其中扩散系数最初随着温度升高而降低,然后升高,在80℃时达到最小值0.172×10厘米²/秒。这些发现为用于Cs原子蒸汽池应用的高性能抗弛豫涂层的设计、优化和制造提供了理论指导。