Suppr超能文献

细胞外囊泡递送的环状RNA circDB通过miR-34a/USP7/Notch1信号通路促进缺血性肌肉修复。

Extracellular vesicles-delivered circDB promotes ischemic muscle repair through the miR-34a/USP7/Notch1 signaling pathway.

作者信息

Jiao Lijuan, Han Qingfang, Xu Yan, Chen Wenjie, Lu Tonggan, Zhang Huiling, Zhou Anqi, Wu Weiliang, Zhang Yu, Li Ao, Li Yangxin

机构信息

Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, PR China.

Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.

出版信息

Regen Ther. 2025 Aug 16;30:616-628. doi: 10.1016/j.reth.2025.08.009. eCollection 2025 Dec.

Abstract

INTRODUCTION

The incidence of lower limb ischemic diseases has been rising steadily in recent years, often leading to severe outcomes such as limb amputation. Given the limited availability of effective treatments, there is a critical need for novel therapeutic strategies. This study explores the reparative role and underlying mechanisms of extracellular vesicles derived from human umbilical cord mesenchymal stem cells (UMSC-EVs) in promoting ischemic hindlimb recovery through the delivery of circular RNA circDB.

METHODS

A hindlimb ischemia model was established in C57BL/6 mice femoral artery ligation, followed by intramuscular injections of extracellular vesicles derived from either untreated UMSCs (NC-EVs) or UMSCs transfected with si-circDB (si-EVs). Functional recovery was assessed using Laser Doppler imaging for blood flow, grip strength tests, and treadmill endurance evaluations. Molecular analyses included Western blot and qRT-PCR for USP7 and Notch1 expression, EdU assays for myoblast proliferation, and co-immunoprecipitation to confirm USP7-Notch1 interactions. , C2C12 myoblasts were cultured under hypoxic conditions for 48 h to mimic ischemia, and their proliferation and signaling were studied using similar techniques. Bioinformatics tools (CircBank, TargetScan) were used to analyze circDB-miR-34a interactions.

RESULTS

We found that circDB expression is markedly reduced in ischemic hindlimb tissues and is closely associated with tissue repair. In a murine hindlimb ischemia model, localized injection of UMSC-EVs into ischemic muscle significantly enhanced blood flow recovery, improved muscle function, and increased expression of USP7 and Notch1. Additionally, a hypoxia-induced myoblast injury model revealed that UMSC-EVs delivering circDB promoted myoblast proliferation the miR-34a/USP7/Notch1 signaling axis.

CONCLUSION

Extracellular vesicles circDB enhances ischemic muscle repair by modulating the miR-34a/USP7/Notch1 pathway. These findings highlight a novel mechanism by which UMSC-derived extracellular vesicles facilitate muscle regeneration and suggest a promising therapeutic approach for lower limb ischemic diseases.

摘要

引言

近年来,下肢缺血性疾病的发病率一直在稳步上升,常常导致诸如肢体截肢等严重后果。鉴于有效治疗方法有限,迫切需要新的治疗策略。本研究探讨了人脐带间充质干细胞来源的细胞外囊泡(UMSC-EVs)通过递送环状RNA circDB在促进缺血后肢恢复中的修复作用及潜在机制。

方法

通过结扎C57BL/6小鼠股动脉建立后肢缺血模型,随后将未处理的脐带间充质干细胞来源的细胞外囊泡(NC-EVs)或转染了si-circDB的脐带间充质干细胞来源的细胞外囊泡(si-EVs)进行肌肉注射。使用激光多普勒成像评估血流、握力测试和跑步机耐力评估来评估功能恢复情况。分子分析包括蛋白质免疫印迹法和qRT-PCR检测USP7和Notch1的表达、EdU检测成肌细胞增殖以及免疫共沉淀以确认USP7-Notch1相互作用。此外,将C2C12成肌细胞在缺氧条件下培养48小时以模拟缺血,并使用类似技术研究其增殖和信号传导。使用生物信息学工具(CircBank、TargetScan)分析circDB-miR-34a相互作用。

结果

我们发现circDB在缺血后肢组织中的表达明显降低,且与组织修复密切相关。在小鼠后肢缺血模型中,将UMSC-EVs局部注射到缺血肌肉中可显著增强血流恢复、改善肌肉功能并增加USP7和Notch1的表达。此外,缺氧诱导的成肌细胞损伤模型显示,递送circDB的UMSC-EVs通过miR-34a/USP7/Notch1信号轴促进成肌细胞增殖。

结论

细胞外囊泡circDB通过调节miR-34a/USP7/Notch1途径增强缺血肌肉修复。这些发现突出了脐带间充质干细胞来源的细胞外囊泡促进肌肉再生的新机制,并为下肢缺血性疾病提出了一种有前景的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b8f/12391560/778d7b0a5d31/gr1.jpg

相似文献

1
Extracellular vesicles-delivered circDB promotes ischemic muscle repair through the miR-34a/USP7/Notch1 signaling pathway.
Regen Ther. 2025 Aug 16;30:616-628. doi: 10.1016/j.reth.2025.08.009. eCollection 2025 Dec.
3
Targeted delivery of engineered extracellular vesicles to simultaneously promote vascularization and muscle regeneration in ischemic limbs.
J Control Release. 2025 Aug 10;384:113938. doi: 10.1016/j.jconrel.2025.113938. Epub 2025 Jun 6.
8
Isolation and characterization of bone mesenchymal cell small extracellular vesicles using a novel mouse model.
J Bone Miner Res. 2024 Oct 29;39(11):1633-1643. doi: 10.1093/jbmr/zjae135.
10
Glycolytic PFKFB3 and Glycogenic UGP2 Axis Regulates Perfusion Recovery in Experimental Hind Limb Ischemia.
Arterioscler Thromb Vasc Biol. 2024 Aug;44(8):1764-1783. doi: 10.1161/ATVBAHA.124.320665. Epub 2024 Jun 27.

本文引用的文献

1
Cyr61 promotes D-gal-induced aging C2C12 cell fibrosis by modulating Wnt/β-catenin signaling pathways.
Mech Ageing Dev. 2025 Jun;225:112067. doi: 10.1016/j.mad.2025.112067. Epub 2025 May 8.
2
Exploring the diagnostic potential of plasma circ-CCDC66 in colorectal cancer.
Sci Rep. 2025 Apr 3;15(1):11463. doi: 10.1038/s41598-025-95685-5.
3
Bio-orthogonal-labeled exosomes reveals specific distribution in vivo and provides potential application in ARDS therapy.
Biomaterials. 2025 Aug;319:123208. doi: 10.1016/j.biomaterials.2025.123208. Epub 2025 Feb 24.
6
CircRNA: A new target for ischemic stroke.
Gene. 2025 Jan 15;933:148941. doi: 10.1016/j.gene.2024.148941. Epub 2024 Sep 11.
7
MLKL-USP7-UBA52 signaling is indispensable for autophagy in brain through maintaining ubiquitin homeostasis.
Autophagy. 2025 Feb;21(2):424-446. doi: 10.1080/15548627.2024.2395727. Epub 2024 Sep 19.
8
USP7/NOTCH1: A potential therapeutic mechanism for cardiac diseases.
Int J Cardiol. 2024 Dec 15;417:132428. doi: 10.1016/j.ijcard.2024.132428. Epub 2024 Aug 6.
9
The orchestration of cell-cycle reentry and ribosome biogenesis network is critical for cardiac repair.
Theranostics. 2024 Jun 24;14(10):3927-3944. doi: 10.7150/thno.96460. eCollection 2024.
10
Notch1 regulates hepatic thrombopoietin production.
Blood. 2024 Jun 27;143(26):2778-2790. doi: 10.1182/blood.2023023559.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验