Suppr超能文献

用于高效有机发光二极管的敏化剂的分子设计:能量传递动力学的探索

Molecular design of sensitizers for high-efficiency OLEDs: exploration of energy transfer dynamics.

作者信息

Liu Xiao, Wen Xue-Liang, Zhou Yang, Tang Chao, Tang Diandong, Wang Qian, Shi Yibo, Liu Lin, Sun Wei, Feng Kai, Fang Wei-Hai, Qiao Juan, Shen Lin, Chen Xuebo

机构信息

Key Laboratory of Theoretical and Computational Photochemistry of the Chinese Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China

Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China

出版信息

Chem Sci. 2025 Aug 29. doi: 10.1039/d5sc03817k.

Abstract

As a class of functional materials used in organic light-emitting diodes (OLEDs), sensitizers play a crucial role in the improvement of device efficiency, color purity, and stability. In recent years, thermally activated delayed fluorescence (TADF) sensitizers have attracted much attention mainly because of their high exciton utilization efficiency by converting quenched triplet excitons into singlet excitons. Despite the experimental success of sensitization strategies in enhancing OLED performance, the lack of theoretical models for sensitizers continues to hinder further development. In the present work, we design three novel sensitizers and investigate their photophysical mechanisms in the presence of a host and/or an emitter. Based on highly accurate electronic structure calculations and non-radiative transition rates, we propose the first theoretical model to describe the dynamic behavior of sensitizers in OLEDs. This model highlights key factors for achieving ultraefficient sensitization, such as multi-channel energy transfer capabilities, large intermolecular electronic couplings, and reduced redundant energy transfer pathways in devices as well as conformational rigidity under excitation and small singlet-triplet energy splitting for ideal sensitizers. In particular, a binary system consisting of a new sensitizer as the host material and an emitter achieves excellent performance with a high external quantum efficiency of 29.2% and negligible efficiency roll-off of 5.5% at a brightness of 1000 cd m for red phosphorescent OLEDs. These findings provide fundamental chemical insights into exciton dynamics and practical guidelines for material-device co-optimization in next-generation electroluminescent technologies.

摘要

作为用于有机发光二极管(OLED)的一类功能材料,敏化剂在提高器件效率、色纯度和稳定性方面起着至关重要的作用。近年来,热激活延迟荧光(TADF)敏化剂备受关注,主要是因为它们能通过将猝灭的三重态激子转化为单重态激子,从而具有较高的激子利用效率。尽管敏化策略在提高OLED性能方面取得了实验成功,但缺乏敏化剂的理论模型仍在继续阻碍进一步发展。在本工作中,我们设计了三种新型敏化剂,并研究了它们在存在主体和/或发光体时的光物理机制。基于高精度的电子结构计算和非辐射跃迁速率,我们提出了第一个描述OLED中敏化剂动态行为的理论模型。该模型突出了实现超高效敏化的关键因素,如多通道能量转移能力、大的分子间电子耦合、器件中减少的冗余能量转移途径以及激发态下的构象刚性和理想敏化剂的小单重态-三重态能量分裂。特别是,由一种新型敏化剂作为主体材料和一种发光体组成的二元体系,对于红色磷光OLED,在1000 cd m的亮度下实现了29.2%的高外量子效率和5.5%的可忽略不计的效率滚降,表现优异。这些发现为激子动力学提供了基本的化学见解,并为下一代电致发光技术中的材料-器件协同优化提供了实用指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27d5/12459007/bdea7d55036e/d5sc03817k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验