Suppr超能文献

通过超高密度CMOS微电极阵列进行场电位成像在脑类器官中实现高级神经活动图谱绘制。

Advanced neural activity mapping in brain organoids via field potential imaging with ultra-high-density CMOS microelectrode arrays.

作者信息

Yokoi Remi, Matsuda Naoki, Ishibashi Yuto, Suzuki Ikuro

机构信息

Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan.

出版信息

Front Neurosci. 2025 Aug 13;19:1634582. doi: 10.3389/fnins.2025.1634582. eCollection 2025.

Abstract

INTRODUCTION

Human iPSC-derived brain organoids and assembloids have emerged as promising in vitro models for recapitulating human brain development, neurological disorders, and drug responses. However, detailed analysis of their electrophysiological properties requires advanced measurement techniques.

METHODS

Here, we present an analytical approach using ultra-high-density (UHD) CMOS microelectrode arrays (MEAs) with 236,880 electrodes across a 32.45 mm2 sensing area, enabling large-scale field potential imaging (FPI) of brain organoids.

RESULTS

Neuronal activity was recorded from over 46,000 electrodes, allowing single-cell spike detection and network connectivity analysis. In midbrain organoids, L-DOPA administration elicited both excitatory and inhibitory responses, with a dose-dependent shift toward network enhancement. Leveraging the spatiotemporal resolution of the UHD-CMOSMEA, we introduced two novel endpoints: propagation velocity and propagation area. In cortical organoids, picrotoxin increased propagation velocity, while MK-801 reduced propagation area. FPI also enabled frequency-domain analyses, revealing region-specific activity, including distinct gamma-band patterns. In midbrain-striatal assembloids, 4-aminopyridine enhanced interorganoid connectivity.

CONCLUSION

This single-cell-resolved, large-scale recording approach using UHD-CMOS MEAs enables detailed analysis of network connectivity, propagation dynamics, and frequency features. It provides a powerful platform for studying brain organoids and assembloids, with strong potential for drug discovery and disease modeling in human neuroscience.

摘要

引言

人诱导多能干细胞衍生的脑类器官和组装体已成为用于概括人类大脑发育、神经疾病和药物反应的有前景的体外模型。然而,对其电生理特性进行详细分析需要先进的测量技术。

方法

在此,我们提出一种分析方法,使用具有236,880个电极、跨越32.45平方毫米传感区域的超高密度(UHD)互补金属氧化物半导体微电极阵列(MEA),能够对脑类器官进行大规模场电位成像(FPI)。

结果

从超过46,000个电极记录到神经元活动,从而实现单细胞尖峰检测和网络连通性分析。在中脑类器官中,给予左旋多巴引发了兴奋性和抑制性反应,且随着剂量增加,网络增强作用呈剂量依赖性转变。利用UHD-CMOS MEA的时空分辨率,我们引入了两个新的终点指标:传播速度和传播面积。在皮质类器官中,印防己毒素增加了传播速度,而MK-801减小了传播面积。FPI还实现了频域分析,揭示了区域特异性活动,包括不同的γ波段模式。在中脑-纹状体组装体中,4-氨基吡啶增强了类器官间的连通性。

结论

这种使用UHD-CMOS MEA的单细胞分辨率大规模记录方法能够对网络连通性、传播动力学和频率特征进行详细分析。它为研究脑类器官和组装体提供了一个强大的平台,在人类神经科学的药物发现和疾病建模方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验