基于中国患者肿瘤增殖和免疫相关生物标志物的卵巢癌预后预测列线图的开发与验证

Development and Validation of a Nomogram for Prognostic Prediction in Ovarian Cancer Based on Tumor Proliferation and Immune-Related Biomarkers in Chinese Patients.

作者信息

Ren Yanan, Jin Ying, Xu Ren, Su Luyang, Wang Yazhuo, Zhang Di, Chu Zhaoping, Wang Shaoqing

机构信息

Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China.

Obstetric and Gynecological Rehabilitation, Hebei General Hospital, Shijiazhuang, People's Republic of China.

出版信息

Int J Womens Health. 2025 Aug 25;17:2661-2670. doi: 10.2147/IJWH.S517367. eCollection 2025.

Abstract

OBJECTIVE

To develop a nomogram prediction model for ovarian cancer prognosis using tumor proliferation and immune-related biomarkers.

METHODS

Between January 2018 and December 2023, clinical data were collected from 140 patients diagnosed with epithelial ovarian cancer (EOC). These patients were randomly allocated into a training cohort consisting of 84 patients and a validation cohort comprising 56 patients, adhering to a 6:4 ratio. Immunohistochemical staining assessed Ki67, epidermal growth factor receptor (EGFR), and programmed death-ligand 1 (PD-L1) expression. Lasso-Cox regression identified variables for the nomogram model. Model performance was evaluated using time-dependent receiver operating characteristic (ROC) curves, concordance index, calibration curves, and decision curve analysis. Kaplan-Meier survival analysis assessed the prognostic value of the model's risk score.

RESULTS

Lasso-Cox regression identified seven variables for constructing the nomogram prediction model: maximum tumor diameter, KI67 positive rate, pathological grade, N stage, M stage, KI67 ≥ 20%, and PD-L1 > 0. The area under the ROC curve (AUC) for 1-, 4-, and 6-year overall survival (OS) in the training set were 0.908, 0.940, and 0.965, respectively, with a concordance index of 0.85 [95% confidence interval (CI): 0.80-0.90]. In the validation set, the AUCs for 1-, 4-, and 6-year OS were 0.835, 0.802, and 0.832, respectively, with a concordance index of 0.72 (95% CI: 0.65-0.79). Calibration curves demonstrated good agreement between predicted and actual outcomes (as indicated by non-significant Hosmer-Lemeshow tests, all P>0.05). The model outperformed TNM staging in clinical benefit. High-risk scores correlated with poorer overall and progression-free survival (P<0.01). These findings suggest the nomogram can effectively stratify patients and predict prognosis.

CONCLUSION

The successful development and validation of a nomogram prediction model based on tumor proliferation and immune-related biomarkers offers an efficient and straightforward clinical tool. This tool holds promise for enabling personalized treatment strategies for patients with ovarian cancer.

摘要

目的

利用肿瘤增殖和免疫相关生物标志物开发一种用于预测卵巢癌预后的列线图预测模型。

方法

2018年1月至2023年12月期间,收集了140例诊断为上皮性卵巢癌(EOC)患者的临床数据。这些患者按照6:4的比例随机分为由84例患者组成的训练队列和由56例患者组成的验证队列。免疫组织化学染色评估Ki67、表皮生长因子受体(EGFR)和程序性死亡配体1(PD-L1)的表达。Lasso-Cox回归确定列线图模型的变量。使用时间依赖性受试者工作特征(ROC)曲线、一致性指数、校准曲线和决策曲线分析评估模型性能。Kaplan-Meier生存分析评估模型风险评分的预后价值。

结果

Lasso-Cox回归确定了七个用于构建列线图预测模型的变量:最大肿瘤直径、Ki67阳性率、病理分级、N分期、M分期、Ki67≥20%和PD-L1>0。训练集中1年、4年和6年总生存期(OS)的ROC曲线下面积(AUC)分别为0.908、0.940和0.965,一致性指数为0.85[95%置信区间(CI):0.80-0.90]。在验证集中,1年、4年和6年OS的AUC分别为0.835、0.802和0.832,一致性指数为0.72(95%CI:0.65-0.79)。校准曲线显示预测结果与实际结果之间具有良好的一致性(Hosmer-Lemeshow检验无显著性,所有P>0.05)。该模型在临床获益方面优于TNM分期。高风险评分与较差的总生存期和无进展生存期相关(P<0.01)。这些发现表明列线图可以有效地对患者进行分层并预测预后。

结论

基于肿瘤增殖和免疫相关生物标志物的列线图预测模型的成功开发和验证提供了一种高效且直观的临床工具。该工具有望为卵巢癌患者制定个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9843/12396520/21e34647c197/IJWH-17-2661-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索