Alikhanzadeh Mona, Imanparast Armin, Einafshar Elham, Gholamhosseinian Hamid, Sazgarnia Ameneh
Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Iran J Basic Med Sci. 2025;28(10):1392-1405. doi: 10.22038/ijbms.2025.86535.18694.
During radiotherapy, weak photons of Cherenkov radiation are generated, which can cause a relative increase in tumor resistance and cause errors in the radiotherapy treatment planning process. In this study, we used a photosensitive biohybrid graphene oxide nanostructure (GO-BSA-CTAB-PpIX) to maximize the absorption of Cherenkov photons in a broader range of emission wavelengths in order to create the induced photodynamic effect resulting from Cherenkov radiation.
TIn the first stage, after the synthesis and surface activation of the graphene oxide nanostructure by EDC, NHS, and albumin, its conjugation process with PpIX was performed. In the second step, it was characterized using an ultraviolet-visible spectrophotometer, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray energy diffraction spectroscopy, and field emission scanning electron microscopy. In the third step, nanodosimetry was performed to prove the Cherenkov-induced photodynamic phenomenon. Finally, cellular studies were performed on the HeLa cell line (cervical cancer). The survival rate of different groups was measured using multiple MTT tests (24 to 72 hr), and the final results were statistically analyzed using GraphPad Prism software.
The results show that the GO-BSA-CTAB-PpIX biohybrid nanostructure can be capable of generating various types of free radicals resulting from photodynamic therapy. This nanostructure inhibits cell growth by disrupting the cellular repair process through natural Cherenkov radiation during radiotherapy and creating an associated photodynamic effect (<0.05).
Cherenkov radiation-based photodynamic therapy is a promising approach to address the challenges of photodynamic therapy and radiotherapy for cervical cancer.
在放射治疗期间,会产生切伦科夫辐射的弱光子,这会导致肿瘤抗性相对增加,并在放射治疗计划过程中产生误差。在本研究中,我们使用了一种光敏生物杂交氧化石墨烯纳米结构(GO-BSA-CTAB-PpIX),以在更宽的发射波长范围内最大化对切伦科夫光子的吸收,从而产生由切伦科夫辐射引起的诱导光动力效应。
在第一阶段,通过EDC、NHS和白蛋白对氧化石墨烯纳米结构进行合成和表面活化后,进行其与PpIX的共轭过程。第二步,使用紫外可见分光光度计、动态光散射、傅里叶变换红外光谱、X射线能量衍射光谱和场发射扫描电子显微镜对其进行表征。第三步,进行纳米剂量测定以证明切伦科夫诱导的光动力现象。最后,对HeLa细胞系(宫颈癌)进行细胞研究。使用多次MTT试验(24至72小时)测量不同组的存活率,并使用GraphPad Prism软件对最终结果进行统计分析。
结果表明,GO-BSA-CTAB-PpIX生物杂交纳米结构能够产生光动力疗法产生的各种类型的自由基。这种纳米结构通过在放射治疗期间通过自然切伦科夫辐射破坏细胞修复过程并产生相关的光动力效应来抑制细胞生长(<0.05)。
基于切伦科夫辐射的光动力疗法是应对宫颈癌光动力疗法和放射治疗挑战的一种有前景的方法。