Wagh Vasant, Raut Vaishnavi, Tadse Kartik, Sahu Uday
School of Earth Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India.
Department of Geology, Toshniwal College of Arts, Commerce and Science, Sengaon, Hingoli, Maharashtra, India.
Sci Rep. 2025 Sep 2;15(1):32329. doi: 10.1038/s41598-025-17782-9.
In the present work statistical techniques and GIS approach has been used to understand the hydrogeochemical evaluation of groundwater and its influencing factors in the region of Deccan Volcanic Province (DVP), Maharashtra, India. A network of 60 groundwater sampling stations was identified by considering geology, geomorphology, land use pattern etc. The groundwater samples were collected subsequently for pre-monsoon (PRM) and post-monsoon (POM) seasons of the year 2022. Hydrochemical analysis include pH, EC, TDS, cations (Ca, Mg, Na, K), anions (CO, HCO, NO, SO, Cl, F) were performed by following standard analytical protocols of American Public Health Association (APHA). As per the Bureau of Indian Standards (BIS) for drinking, the parameters like pH, TH, NO, F and K are surpassed the threshold limits in both the seasons. Also recognize the geological formations with different lithologies from the study region to identify the geogenic causes of contamination. Box plots are prepared for better illustration of average, median, minimum and maximum values for various water ions. Pollution Index of Groundwater (PIG) tool is used to classify the water quality for beneficial use and results depicted that only 1.67% sample from POM season indicates very high pollution. Spatial distribution maps of PIG are prepared in GIS platform to demarcate the different zones of groundwater pollution and observed that south-westerly part having more groundwater pollution than other regions. Statistical techniques like Correlation Matrix (CM), Principal Component Analysis (PCA) and Cluster Analysis (CA) used to know the degree of association among hydrogeochemical data and their collective influence on groundwater quality. Piper trilinear plot has been used to categorize the dominant water facies and types of water in the study region, and results shows that 100% samples having calcium-magnesium and bicarbonate-carbonate types. Bivariate plots for major ions were prepared to signify the natural and anthropogenic factors which alter groundwater quality. Gibb's diagram suggested that 98.34% samples influenced by mechanism of rock domain and only 1.66% sample shows evaporation dominance. Wilcox plot suggested that majority of the groundwater samples are fall in good to moderate categories for agriculture use; while, 95% and 75% samples in excellent to good zone and 5% and 23.34% samples show good to permissible zones in PRM and POM seasons respectively.
在本研究中,运用了统计技术和地理信息系统(GIS)方法来了解印度马哈拉施特拉邦德干火山省(DVP)地区地下水的水文地球化学特征及其影响因素。通过考虑地质、地貌、土地利用模式等因素,确定了一个由60个地下水采样站组成的网络。随后,在2022年的季风前(PRM)和季风后(POM)季节采集了地下水样本。水文化学分析包括pH值、电导率(EC)、总溶解固体(TDS)、阳离子(钙、镁、钠、钾)、阴离子(碳酸根、碳酸氢根、硝酸根、硫酸根、氯离子、氟离子),这些分析均按照美国公共卫生协会(APHA)的标准分析规程进行。根据印度标准局(BIS)的饮用水标准,pH值、总硬度(TH)、硝酸根、氟离子和钾离子等参数在两个季节均超过了阈值。此外,还识别了研究区域内不同岩性的地质构造,以确定污染的地质成因。绘制了箱线图,以便更好地说明各种水中离子的平均值、中位数、最小值和最大值。使用地下水污染指数(PIG)工具对水质进行有益用途分类,结果表明,季风后季节只有1.67%的样本显示污染程度很高。在GIS平台上绘制了PIG的空间分布图,以划分地下水污染的不同区域,观察到西南部地区的地下水污染比其他地区更为严重。运用相关矩阵(CM)、主成分分析(PCA)和聚类分析(CA)等统计技术来了解水文地球化学数据之间的关联程度及其对地下水质量的综合影响。使用派珀三线图对研究区域内的主要水相和水的类型进行分类,结果表明100%的样本属于钙镁型和碳酸氢根 - 碳酸根型。绘制了主要离子的双变量图,以表明改变地下水质量的自然和人为因素。吉布斯图表明,98.34%的样本受岩石域机制影响,只有1.66%的样本显示蒸发作用占主导。威尔科克斯图表明,大多数地下水样本对于农业用途属于良好至中等类别;而在季风前和季风后季节,分别有95%和75%的样本处于优良至良好区域,5%和23.34%的样本处于良好至允许区域。