Bo Tingbei, Xu Xiaoming, Liu He, Tang Liqiu, Xu Haihong, Zhao Siqi, Lv Jinzhen, Wang Dehua
School of Grassland Science, Beijing Forestry University, Beijing 100091, China.
State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
ISME J. 2025 Sep 3. doi: 10.1093/ismejo/wraf201.
The gut microbiota is a key regulator of host energy metabolism, but its role in seasonal adaptation and evolution of bears is still unclear. Although giant pandas are considered an extraordinary member of the Ursidae family due to their specialized herbivory and low metabolic rate, there is still controversy over whether the metabolic regulation mechanism of their gut microbiota is unique. This study analyzed the seasonal dynamics of gut microbiota in giant pandas (Ailuropoda melanoleuca), Asian black bears (Ursus thibetanus), brown bears (Ursus arctos), and polar bears (Ursus maritimus), and combined with fecal microbiota transplantation (FMT) experiments, revealed the following findings. The microbial composition of the four bear species is similar, with both Firmicutes and Proteobacteria dominating. The enrichment of Firmicutes in winter enhances lipid metabolism, and adapts to dietary differences, indicating the existence of convergent microbial functional strategies in the Ursidae family. Our results demonstrate that bear gut microbiota promoted seasonal adaptation. In FMT experiments, bear gut microbiota in winter may had stronger functional capabilities on regulating host energy metabolism in mice, and regulate host appetite to increase energy intake. Finally, despite feeding on bamboo, giant pandas microbiota driven energy metabolism pathways (such as SCFAs) are highly conserved compared to other bears, suggesting a deep commonality in the adaptability of bear microbiota in evolution. Therefore, this study challenges the traditional view of microbial uniqueness of giant pandas, and emphasizes the co-evolutionary mechanism of energy metabolism adaptation in bear animals through microbial plasticity. In the future, it is necessary to integrate wild samples to eliminate the interference of captive diet and further analyze the genetic basis of host gut microbiota interactions.
肠道微生物群是宿主能量代谢的关键调节因子,但其在熊的季节性适应和进化中的作用仍不清楚。尽管大熊猫因其特殊的食草习性和低代谢率被认为是熊科动物中的特殊成员,但关于其肠道微生物群的代谢调节机制是否独特仍存在争议。本研究分析了大熊猫(Ailuropoda melanoleuca)、亚洲黑熊(Ursus thibetanus)、棕熊(Ursus arctos)和北极熊(Ursus maritimus)肠道微生物群的季节性动态,并结合粪便微生物群移植(FMT)实验,得出以下发现。四种熊类的微生物组成相似,厚壁菌门和变形菌门占主导地位。冬季厚壁菌门的富集增强了脂质代谢,并适应了饮食差异,表明熊科动物存在趋同的微生物功能策略。我们的结果表明,熊的肠道微生物群促进了季节性适应。在FMT实验中,冬季熊的肠道微生物群对调节小鼠宿主能量代谢可能具有更强的功能能力,并调节宿主食欲以增加能量摄入。最后,尽管大熊猫以竹子为食,但其微生物群驱动的能量代谢途径(如短链脂肪酸)与其他熊相比高度保守,这表明熊微生物群在进化中的适应性存在深刻的共性。因此,本研究挑战了大熊猫微生物独特性的传统观点,并强调了通过微生物可塑性实现熊类动物能量代谢适应的共同进化机制。未来,有必要整合野生样本以消除圈养饮食的干扰,并进一步分析宿主肠道微生物群相互作用的遗传基础。