Suppr超能文献

原发性膜性肾病临床缓解的早期预测因素识别:STARMEN试验分析

Identification of early predictors of clinical remission in primary membranous nephropathy: a analysis of the STARMEN trial.

作者信息

Rojas-Rivera Jorge E, Caravaca-Fontán Fernando, van de Logt Anne-Els, Sevillano Angel, Shabaka Amir, Ávila Ana, Rabasco Cristina, Cabello Virginia, Ortiz Alberto, Quintana Luis F, Goicoechea Marian, Diaz Montserrat, Ronco Pierre, Wetzels Jack, Fernández-Juárez Gema, Praga Manuel

机构信息

Department of Nephrology and Hypertension, Hospital Universitario Fundación Jiménez Díaz & Current Visiting Research Scholar, The Ohio State University - Wexner Medical Center, Columbus, OH, USA.

Universidad Autónoma de Madrid, Madrid, Spain.

出版信息

Clin Kidney J. 2025 Aug 13;18(9):sfaf256. doi: 10.1093/ckj/sfaf256. eCollection 2025 Sep.

Abstract

BACKGROUND

Patients with primary membranous nephropathy may progress to advanced chronic kidney disease despite immunosuppressive therapy (IST). Prediction of treatment response based on early and combined assessment of several standard clinical markers could improve risk stratification for progression, allowing timely individualization of treatment, which can optimize clinical outcomes and safety.

METHODS

In this exploratory analysis of the STARMEN trial, we evaluated if combined baseline data, and IST-induced early changes in standard clinical markers predicted clinical remission at 2 years. The 2-year primary outcome was complete (CR) or partial remission (PR). The secondary outcome was CR. Additionally, we described kidney function outcomes. Standard clinical markers were incorporated into statistical modeling by logistic regression. Predictive performance was assessed by receiver operating characteristic curve analysis.

RESULTS

The best multivariate model excluding immunosuppression to predict complete or PR at 2 years, included 3-month 24-h proteinuria, serum creatinine and immunological response [area under the curve (AUC) 0.87, 95% confidence interval (CI) 0.76-0.94, efficiency 87%]. For CR at 2 years, the best model included the same clinical markers at 6 months, but predictive performance was lower (AUC 0.74, 95% CI 0.62-0.85, efficiency 70%).

CONCLUSIONS

In the STARMEN cohort, a multivariable model that included 24-h proteinuria, serum creatinine and immunological response status at 3 months after initiation of IST predicted clinical remission at 2 years with significantly better predictive performance than baseline data or each clinical marker assessed separately.

摘要

背景

尽管接受了免疫抑制治疗(IST),原发性膜性肾病患者仍可能进展为晚期慢性肾脏病。基于对几种标准临床标志物的早期联合评估来预测治疗反应,可改善疾病进展的风险分层,实现治疗的及时个体化,从而优化临床结局和安全性。

方法

在这项对STARMEN试验的探索性分析中,我们评估了基线数据与IST诱导的标准临床标志物早期变化相结合是否能预测2年时的临床缓解。2年的主要结局为完全缓解(CR)或部分缓解(PR)。次要结局为CR。此外,我们描述了肾功能结局。通过逻辑回归将标准临床标志物纳入统计模型。通过受试者工作特征曲线分析评估预测性能。

结果

预测2年时完全缓解或PR的最佳多变量模型(不包括免疫抑制)纳入了3个月时的24小时蛋白尿、血清肌酐和免疫反应[曲线下面积(AUC)0.87,95%置信区间(CI)0.76 - 0.94,效率87%]。对于2年时的CR,最佳模型纳入了6个月时相同的临床标志物,但预测性能较低(AUC 0.74,95% CI 0.62 - 0.85,效率70%)。

结论

在STARMEN队列中,一个包含IST开始后3个月时的24小时蛋白尿、血清肌酐和免疫反应状态的多变量模型预测2年时的临床缓解,其预测性能显著优于基线数据或单独评估的每个临床标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e696/12399971/968fa92472e3/sfaf256fig1g.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验