Kalinovych Viacheslav, Piliai Lesia, Kosto Yuliia, Mehl Sascha L, Skála Tomáš, Prince Kevin C, Matolínová Iva, Xu Ye, Tsud Nataliya
Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, Prague 18000, Czech Republic.
Elettra-Sincrotrone Trieste S.C.p.A., in Area Science Park, Strada Statale 14, km 163.5, Basovizza, Trieste 34149, Italy.
J Phys Chem C Nanomater Interfaces. 2025 Aug 13;129(34):15265-15281. doi: 10.1021/acs.jpcc.5c04065. eCollection 2025 Aug 28.
This paper reports on a study of the adsorption and thermal stability of phenylphosphonic acid (PPA) adsorbed by physical vapor deposition on the surfaces of epitaxial cerium oxide films of different structure, stoichiometry and composition. Advanced analytical methods based on photoelectron spectroscopy combined with DFT calculations showed that the binding of PPA to cerium oxide is through the phosphonate group, while the decomposition temperature is defined by the nature of the oxide. Tridentate PPA species are present on all substrates (CeO, CeO, CeO, and CeWO), indicating a strong affinity of PPA for cerium oxide. The presence of vacancies in the oxide influences the molecular orientation. The phenyl ring of the PPA tilts about 10° more toward the surface plane of the reduced cerium oxides compared to CeO, which is attributed to the adsorption of phosphonate groups on Ce and Ce cations. The PPA adlayer is more stable on the surfaces with higher concentrations of oxygen vacancies and/or Ce cations, increasing the temperature to initiate cleavage of the P-C bond from 225 °C for PPA/CeO to 350 °C for the other systems. The PPA decomposition is signaled by the desorption of carbonaceous species above a critical temperature, while the phosphorus species remain stable even after annealing at 450 °C for all the cerium oxides. Overall, the results provide a comprehensive understanding of the binding of PPA to cerium oxides, allowing further development of functionalization strategies for inorganic materials by phosphonic acids.
本文报道了一项关于通过物理气相沉积法吸附在不同结构、化学计量比和组成的外延氧化铈薄膜表面的苯基膦酸(PPA)的吸附和热稳定性的研究。基于光电子能谱结合密度泛函理论计算的先进分析方法表明,PPA与氧化铈的结合是通过膦酸酯基团,而分解温度由氧化物的性质决定。三齿PPA物种存在于所有底物(CeO、CeO、CeO和CeWO)上,表明PPA对氧化铈有很强的亲和力。氧化物中 vacancies 的存在会影响分子取向。与CeO相比,PPA的苯环向还原氧化铈的表面平面倾斜约10°更多,这归因于膦酸酯基团在Ce和Ce阳离子上的吸附。PPA吸附层在具有较高氧 vacancies 浓度和/或Ce阳离子的表面上更稳定,将引发P-C键断裂的温度从PPA/CeO的225°C提高到其他体系的350°C。在临界温度以上,含碳物种的解吸表明PPA发生分解,而对于所有氧化铈,即使在450°C退火后,磷物种仍保持稳定。总体而言,这些结果提供了对PPA与氧化铈结合的全面理解,有助于通过膦酸进一步开发无机材料的功能化策略。