Yang Wenqiang, Wang Shaohua, Shi Wen, Yin Yakun, Mise Youpo, An Juan, Zhou Xuejiao, Xia Wentang
School of Metallurgy and Power Engineering, Chongqing University of Science and Technology Chongqing 401331 P. R. China
Chongqing Municipal Key Laboratory of Institutions of Higher Education for Value-added Treatment and Green Extraction from Complicated Resources Chongqing 401331 P. R. China.
RSC Adv. 2025 Sep 1;15(38):31095-31106. doi: 10.1039/d5ra03467a. eCollection 2025 Aug 29.
The development of high-efficiency, earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is essential for scalable green hydrogen production, yet challenges persist in balancing activity, stability, and cost. Herein, we present a sustainable approach to synthesize Fe-doped cobalt sulfide (Co-S-30Fe) nanoparticles using an ethaline deep eutectic solvent-mediated strategy, which enables precise control over Fe incorporation to optimize both structural and electronic properties. The engineered Co-S-30Fe/NF electrode exhibited exceptional OER performance in alkaline media, requiring an overpotential of only 278 mV at 100 mA cm, with a Tafel slope of 44.6 mV dec and outstanding operational stability. Spectroscopic analyses revealed that Fe doping induces three synergistic effects: (1) coexistence of dynamically active Co/Co and Fe/Fe redox couples, (2) substantial oxygen vacancy generation, and (3) ethaline-directed self-assembly of monodisperse nanospheres (∼96 nm) with 31.6% higher electrochemical surface area. This synergy of electronic reconstruction, defect engineering, and morphology control significantly enhances charge transfer kinetics (67% reduction in charge-transfer resistance) and intrinsic catalytic activity (4.4-fold increase in turnover frequency) compared to undoped Co-S. Critically, electrochemical reorganization during the OER induced a surface transformation into oxygen-rich Co(Fe)-O/OH species, addressing the activity-stability trade-off. When integrated into a Co-S-30Fe/NF‖Pt/C/NF electrolyzer, the system achieved overall water splitting at low cell voltages of 1.53 V and 1.75 V (10 and 100 mA cm, respectively) while maintaining stable operation for 100 h at 10 mA cm.
开发用于析氧反应(OER)的高效、储量丰富的电催化剂对于大规模绿色制氢至关重要,但在平衡活性、稳定性和成本方面仍存在挑战。在此,我们提出了一种可持续的方法,使用乙酰胺深共熔溶剂介导策略合成铁掺杂硫化钴(Co-S-30Fe)纳米颗粒,该策略能够精确控制铁的掺入,以优化结构和电子性能。工程化的Co-S-30Fe/NF电极在碱性介质中表现出优异的OER性能,在100 mA cm时过电位仅为278 mV,塔菲尔斜率为44.6 mV dec,并且具有出色的运行稳定性。光谱分析表明,铁掺杂引发了三种协同效应:(1)动态活性的Co/Co和Fe/Fe氧化还原对共存;(2)大量氧空位的产生;(3)乙酰胺导向的单分散纳米球(约96 nm)自组装,电化学表面积提高31.6%。与未掺杂的Co-S相比,这种电子重构、缺陷工程和形貌控制的协同作用显著提高了电荷转移动力学(电荷转移电阻降低67%)和本征催化活性(周转频率提高4.4倍)。至关重要的是,OER过程中的电化学重组导致表面转变为富氧的Co(Fe)-O/OH物种,解决了活性-稳定性之间的权衡问题。当集成到Co-S-30Fe/NF‖Pt/C/NF电解槽中时,该系统在1.53 V和1.75 V的低电池电压下(分别为10和100 mA cm)实现了全水解,同时在10 mA cm下保持100 h的稳定运行。