Campanelli Lorenzo, Sendoya Juan M, Brody Scott, Galeano Pablo, Do Carmo Sonia, Cuello A Claudio, Castaño Eduardo M, Gonzalés-Jimenez Andrés, Verheul Julia, Medina-Vera Dina, de Fonseca Fernando Rodríguez, Wernersson Rasmus, Morelli Laura
Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, Ciudad Autónoma de Buenos Aires, Argentina.
ZS Discovery department, ZS Associates, Buenos Aires, Argentina.
PLoS One. 2025 Sep 3;20(9):e0330859. doi: 10.1371/journal.pone.0330859. eCollection 2025.
One of the neuropathologic hallmarks of Alzheimer's disease (AD) is amyloid plaques composed of fibrillar amyloid beta (Aβ) that accumulate in the hippocampus and cerebral cortex. The identification of molecular changes and interactions associated with Aβ-dependent cerebral amyloidosis is a need in the field. We hypothesize that structured datasets linking proteins to differentially abundant metabolites may provide an indirect but effective means of elucidating the processes and functions in which these metabolites are involved. The goal of this study was to identify core network modules related to AD-like cerebral amyloidosis to provide new insights into the molecular underpinnings of this brain disorder potentially associated with diet and microbiota modulation.
We performed fecal bacterial genotyping and untargeted metabolomic analysis of plasma and feces from wild-type and McGill-R-Thy1-APP transgenic (Tg) rats, a model of AD-like cerebral amyloidosis, that were exposed to a high-fat diet protocol. To identify relevant proteins associated with the discriminant metabolites, we used several structured databases. Protein-metabolite associations (both physical and functional) were retrieved, and a collection of AD-associated protein-protein interaction (PPI) networks were built using a near-neighborhood approach.
A total of 44 bacterial genera and 636 plasma and 576 fecal metabolites were analyzed. From the discriminating metabolites of the Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) models, 657 networks were collected and a subset of the top 20 exploratory networks was defined. The first ranked network in terms of seed protein enrichment and number of participating metabolites showed strong biological signals of innate and adaptive immunity processes, with CD36 emerging as a central hub, orchestrating immunity, metabolic pathways, and fatty acid trafficking.
The network biology approach enabled a precise definition of the metabolic pathways underlying the disease biology highlighting the role of immune system in the complex interaction of the brain-gut axis.
阿尔茨海默病(AD)的神经病理学特征之一是由纤维状淀粉样β蛋白(Aβ)组成的淀粉样斑块,其在海马体和大脑皮层中积累。识别与Aβ依赖性脑淀粉样变性相关的分子变化和相互作用是该领域的一项需求。我们假设,将蛋白质与差异丰富的代谢物联系起来的结构化数据集可能提供一种间接但有效的方法,以阐明这些代谢物所涉及的过程和功能。本研究的目的是识别与AD样脑淀粉样变性相关的核心网络模块,以便为这种可能与饮食和微生物群调节相关的脑部疾病的分子基础提供新的见解。
我们对野生型和麦吉尔-R-Thy1-APP转基因(Tg)大鼠(一种AD样脑淀粉样变性模型)的粪便进行细菌基因分型,并对其血浆和粪便进行非靶向代谢组学分析,这些大鼠接受了高脂饮食方案。为了识别与判别代谢物相关的相关蛋白质,我们使用了几个结构化数据库。检索蛋白质-代谢物关联(包括物理和功能关联),并使用近邻方法构建了一组与AD相关的蛋白质-蛋白质相互作用(PPI)网络。
共分析了44个细菌属以及636种血浆代谢物和576种粪便代谢物。从稀疏偏最小二乘判别分析(sPLS-DA)模型的判别代谢物中,收集了657个网络,并定义了前20个探索性网络的一个子集。就种子蛋白富集和参与代谢物数量而言排名第一的网络显示出先天和适应性免疫过程的强烈生物学信号,其中CD36成为一个中心枢纽,协调免疫、代谢途径和脂肪酸运输。
网络生物学方法能够精确界定疾病生物学背后的代谢途径,突出了免疫系统在脑-肠轴复杂相互作用中的作用。