文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Development, optimization, and preliminary evaluation of a novel artificial intelligence tool to promote patient health literacy in radiology reports: The Rads-Lit tool.

作者信息

Doshi Rushabh H, Amin Kanhai, Chan Shin Mei, Kaur Manroop, Bajaj Simar S, Khosla Pavan, Kothari Veer T, Mozayan Ali, Tocino Irena, Chheang Sophie

机构信息

Yale School of Medicine, New Haven, Connecticut, United States of America.

Yale College, New Haven, Connecticut, United States of America.

出版信息

PLoS One. 2025 Sep 3;20(9):e0331368. doi: 10.1371/journal.pone.0331368. eCollection 2025.


DOI:10.1371/journal.pone.0331368
PMID:40901830
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12407389/
Abstract

Radiology reports are an integral part of patient medical records; however, these reports often contain complex medical terminology that are difficult for patients to comprehend, potentially leading to anxiety, misunderstanding, and misinterpretation. The development of user-friendly instruments to improve understanding is thus critically important to enhance health literacy and empower patients. In this study, we introduce a novel artificial intelligence (AI) interface, the Rads-Lit Tool, which can simplify radiology reports for patients using natural language processing (NLP) techniques. This manuscript presents the development process, methodology, and results of the Rads-Lit Tool, demonstrating its potential to simplify radiology reports across various examination types and complexity levels. Our findings highlight that patient-facing AI-driven tools can enhance patient health literacy and foster improved patient-provider communication in radiology.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e2/12407389/d2d2a287d254/pone.0331368.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e2/12407389/5ca334af4ba4/pone.0331368.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e2/12407389/696a7be804d9/pone.0331368.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e2/12407389/c3c29138592a/pone.0331368.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e2/12407389/d2d2a287d254/pone.0331368.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e2/12407389/5ca334af4ba4/pone.0331368.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e2/12407389/696a7be804d9/pone.0331368.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e2/12407389/c3c29138592a/pone.0331368.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e2/12407389/d2d2a287d254/pone.0331368.g004.jpg

相似文献

[1]
Development, optimization, and preliminary evaluation of a novel artificial intelligence tool to promote patient health literacy in radiology reports: The Rads-Lit tool.

PLoS One. 2025-9-3

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Improving Patient Communication by Simplifying AI-Generated Dental Radiology Reports With ChatGPT: Comparative Study.

J Med Internet Res. 2025-6-9

[4]
Artificial Intelligence user interface preferences in radiology: A scoping review.

J Med Imaging Radiat Sci. 2025-5

[5]
Artificial intelligence-simplified information to advance reproductive genetic literacy and health equity.

Hum Reprod. 2025-7-22

[6]
A retrospective multi-institutional assessment of breast radiology and pathology report readability and a novel patient tool (MedEd) utilizing American literacy standards.

J Cancer Surviv. 2025-6-30

[7]
An Extraction Tool for Venous Thromboembolism Symptom Identification in Primary Care Notes to Facilitate Electronic Clinical Quality Measure Reporting: Algorithm Development and Validation Study.

JMIR Med Inform. 2025-8-26

[8]
Radiology report generation using automatic keyword adaptation, frequency-based multi-label classification and text-to-text large language models.

Comput Biol Med. 2025-7-3

[9]
Generating colloquial radiology reports with large language models.

J Am Med Inform Assoc. 2024-11-1

[10]
DeePosit, an AI-based tool for detecting mouse urine and fecal depositions from thermal video clips of behavioral experiments.

Elife. 2025-8-28

本文引用的文献

[1]
Digital Health: An Opportunity to Advance Health Equity for People With Disabilities.

Milbank Q. 2025-8-28

[2]
Leveraging Artificial Intelligence to Advance Health Equity in America's Safety Net.

J Gen Intern Med. 2025-5-15

[3]
Equity in Scientific Publishing: Can Artificial Intelligence Transform the Peer Review Process?

Mayo Clin Proc Digit Health. 2023-11-14

[4]
Release of complex imaging reports to patients, do radiologists trust AI to help?

Curr Probl Diagn Radiol. 2025

[5]
How patients are using AI.

BMJ. 2024-11-19

[6]
Characteristics of information on inflammatory skin diseases produced by four large language models.

Int J Dermatol. 2025-4

[7]
ChatGPT and radiology report: potential applications and limitations.

Radiol Med. 2024-12

[8]
Social Media and Artificial Intelligence-Understanding Medical Misinformation Through Snapchat's New Artificial Intelligence Chatbot.

Mayo Clin Proc Digit Health. 2024-6

[9]
Combating Chronic Disease with Barbershop Health Interventions: A Review of Current Knowledge and Potential for Big Data.

Yale J Biol Med. 2024-6

[10]
Decoding medical jargon: The use of AI language models (ChatGPT-4, BARD, microsoft copilot) in radiology reports.

Patient Educ Couns. 2024-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索