Faherty Jacqueline K, Meisner Aaron M, Burningham Ben, Visscher Channon, Line Michael, Suárez Genaro, Gagné Jonathan, Alejandro Merchan Sherelyn, Rothermich Austin James, Burgasser Adam J, Schneider Adam C, Caselden Dan, Kirkpatrick J Davy, Kuchner Marc Jason, Bardalez Gagliuffi Daniella Carolina, Eisenhardt Peter, Gelino Christopher R, Gonzales Eileen C, Marocco Federico, Leggett Sandy, Lodieu Nicolas, Casewell Sarah L, Tremblin Pascal, Cushing Michael, Zapatero Osorio Maria Rosa, Béjar Víctor J S, Gauza Bartosz, Wright Edward, Phillips Mark W, Zhang Jun-Yan, Martin Eduardo L
Department of Astrophysics, American Museum of Natural History, New York, NY, USA.
Department of Physics, The Graduate Center City University of New York, New York, NY, USA.
Nature. 2025 Sep;645(8079):62-66. doi: 10.1038/s41586-025-09369-1. Epub 2025 Aug 20.
Within 20 pc of the Sun, there are currently 29 known cold brown dwarfs-sources with measured distances and an estimated effective temperature between that of Jupiter (170 K) and approximately 500 K (ref. ). These sources are almost all isolated and are the closest laboratories we have for detailed atmospheric studies of giant planets formed outside the Solar System. Here we report JWST observations of one such source, WISEA J153429.75-104303.3 (W1534), which we confirm is a substellar mass member of the Galactic halo with a metallicity of less than 0.01 times solar. Its spectrum reveals methane (CH), water (HO) and silane (SiH) gas. Although SiH is expected to serve as a key reservoir for the cloud-forming element Si in gas giant worlds, it has remained undetected until now because it is removed from observable atmospheres by the formation of silicate clouds at depth. These condensates are favoured with increasing metallicity, explaining why SiH remains undetected on well-studied metal-rich Solar System worlds such as Jupiter and Saturn. On the metal-poor world W1534, we detect a clear signature of SiH centred at about 4.55 μm with an abundance of 19 ± 2 parts per billion. Our chemical modelling suggests that this SiH abundance may be quenched at approximately kilobar levels just above the silicate cloud layers, in which vertical atmospheric mixing can transport SiH to the observable photosphere. The formation and detection of SiH demonstrates key coupled relationships between composition, cloud formation and atmospheric mixing in cold brown dwarf and planetary atmospheres.
在距离太阳20%的范围内,目前已知有29颗冷棕矮星——这些天体的距离已被测量,估计有效温度介于木星(170 K)和大约500 K之间(参考文献)。这些天体几乎都是孤立的,是我们进行太阳系外形成的巨行星详细大气研究的最接近的实验室。在此,我们报告了对其中一个天体WISEA J153429.75-104303.3(W1534)的詹姆斯·韦布空间望远镜(JWST)观测结果,我们确认它是银河系晕的一个次恒星质量成员,金属丰度小于太阳的0.01倍。其光谱揭示了甲烷(CH)、水(HO)和硅烷(SiH)气体。虽然预计硅烷在气态巨行星世界中是形成云的元素硅的关键储存库,但直到现在它仍未被探测到,因为它在深层通过形成硅酸盐云而从可观测大气中被去除。随着金属丰度增加,这些凝结物更易形成,这就解释了为什么在经过充分研究的富含金属的太阳系天体如木星和土星上未探测到硅烷。在金属贫乏的W1534天体上,我们检测到以约4.55微米为中心的清晰的硅烷特征信号,丰度为十亿分之19±2。我们的化学模型表明,这种硅烷丰度可能在硅酸盐云层上方约千巴的水平被淬灭,在该区域垂直大气混合可将硅烷输送到可观测的光球层。硅烷的形成和探测证明了冷棕矮星和行星大气中成分、云形成和大气混合之间的关键耦合关系。