Le Roux Frederique
Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Canada, H3T 1J4.
Philos Trans R Soc Lond B Biol Sci. 2025 Sep 4;380(1934):20240078. doi: 10.1098/rstb.2024.0078.
Natural populations of vibrio beyond the well-studied pandemic strains of , provide a powerful model for investigating the eco-evolutionary dynamics of microbial immune systems. Their genetic diversity, ecological versatility, ease of culturability and the availability of time-series data enable detailed studies of phage-host interactions in natural contexts. This review synthesizes recent advances in vibriophage research, highlighting key findings and emerging tools. High-throughput assays and genomic tools have offered new perspectives on phage specificity, host range and the evolutionary pressures shaping these interactions. Theoretical frameworks, such as arms race and fluctuating selection dynamics, are informed by empirical data from vibrio-phage systems, with time-series sampling providing crucial insights into their temporal and spatial dynamics. A major finding is the role of mobile genetic elements (MGEs) in encoding bacterial defence systems, which shape phage-host coevolution. Discoveries like the phage satellite PICMI illustrate how MGEs facilitate the transfer of antiviral systems, influencing ecological and evolutionary dynamics. The paradox of generalist vibriophages, rare despite their broad host ranges, is also explored. By integrating experimental approaches with field observations, vibriophage research advances microbial ecology and informs sustainable applications in aquaculture and phage therapy, reinforcing vibrios as a versatile model system.This article is part of the discussion meeting issue 'The ecology and evolution of bacterial immune systems'.
除了经过充分研究的大流行菌株外,弧菌的自然种群为研究微生物免疫系统的生态进化动态提供了一个强大的模型。它们的遗传多样性、生态适应性、易于培养以及时间序列数据的可用性,使得在自然环境中对噬菌体 - 宿主相互作用进行详细研究成为可能。本综述综合了弧菌噬菌体研究的最新进展,突出了关键发现和新兴工具。高通量分析和基因组工具为噬菌体特异性、宿主范围以及塑造这些相互作用的进化压力提供了新的视角。诸如军备竞赛和波动选择动态等理论框架,是基于弧菌 - 噬菌体系统的经验数据得出的,时间序列采样为它们的时空动态提供了关键见解。一个主要发现是移动遗传元件(MGEs)在编码细菌防御系统中的作用,这塑造了噬菌体 - 宿主的共同进化。像噬菌体卫星PICMI这样的发现说明了MGEs如何促进抗病毒系统的转移,影响生态和进化动态。泛嗜性弧菌噬菌体尽管宿主范围广泛却很罕见这一矛盾现象也得到了探讨。通过将实验方法与实地观察相结合,弧菌噬菌体研究推动了微生物生态学的发展,并为水产养殖和噬菌体治疗中的可持续应用提供了信息,强化了弧菌作为一个多功能模型系统的地位。本文是“细菌免疫系统的生态学和进化”讨论会议题的一部分。