Fu Yan, Li Kai, Li Xiaoqi, Lv Yicong, Luo Wan, Fu Yikun, Zhang Xiaoyu, Zhang Guifu, Shang Xiaoying, Sun Zhihua, Luo Junhua, Liu Xitao
State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P.R. China.
Angew Chem Int Ed Engl. 2025 Sep 4:e202514355. doi: 10.1002/anie.202514355.
Chiral metal halide perovskites (CMHPs) are a promising class of chiroptical materials with significant potential applications in chiral-optoelectronic and chiral-spintronic devices. However, their chirality induction generally stems from the incorporation of chiral ligands, which constitutes compositional diversity and functional versatility. Herein, we report a significant chiral expression resulting from two distinct mechanisms: chirality transfer induced by chiral organic cations and mirror symmetry breaking driven by stereochemically active lone pairs, both contributing to controlled chirality induction. Homochiral germanium iodide perovskites, (R/S-BrMBA)GeI (R/S is Rectus/Sinister) can be achieved by employing chiral (R/S)-BrMBA cations to induce chirality via hydrogen bonding. In contrast, two enantiomorphous helical germanium iodide perovskites, P/M-(rac-BrMBA)GeI (P/M is Plus/Minus and rac is racemic), are formed via the co-assembly of racemic rac-BrMBA cations and germanium iodide networks, where chirality arises from spontaneous symmetry breaking induced by the stereochemically active 4s electron pair. Remarkably, benefiting from the inherent chirality, both (R-BrMBA)GeI and P-(rac-BrMBA)GeI crystals exhibit exceptional anisotropic nonlinear optical properties with large anisotropy factors (g) up to 0.71 and 0.83 and laser damage thresholds of 697.5 and 535.2 GW cm , surpassing most previously reported CMHPs. This study provides insight into the interplay of chiral organic ligands and inorganic ions in the chiral induction, transfer, and functions of metal halide perovskites.
手性金属卤化物钙钛矿(CMHPs)是一类很有前景的手性光学材料,在手性光电器件和手性自旋电子器件中具有重要的潜在应用。然而,它们的手性诱导通常源于手性配体的引入,这构成了成分多样性和功能多功能性。在此,我们报道了由两种不同机制导致的显著手性表达:手性有机阳离子诱导的手性转移和立体化学活性孤对电子驱动的镜像对称性破缺,二者都有助于实现可控的手性诱导。通过使用手性(R/S)-BrMBA阳离子通过氢键诱导手性,可以实现纯手性碘化锗钙钛矿(R/S-BrMBA)GeI(R/S表示右旋/左旋)。相比之下,两种对映体螺旋碘化锗钙钛矿,P/M-(rac-BrMBA)GeI(P/M表示正/负,rac表示外消旋),是通过外消旋rac-BrMBA阳离子与碘化锗网络的共组装形成的,其中手性源于立体化学活性4s电子对诱导的自发对称性破缺。值得注意的是,得益于其固有的手性,(R-BrMBA)GeI和P-(rac-BrMBA)GeI晶体都表现出优异的各向异性非线性光学性质,各向异性因子(g)高达0.71和0.83,激光损伤阈值分别为697.5和535.2 GW/cm²,超过了大多数先前报道的CMHPs。这项研究深入了解了手性有机配体与无机离子在金属卤化物钙钛矿的手性诱导、转移和功能中的相互作用。