Wang Yin-Fai, Chen Wun-Yu, Chiang Chien-Hung, Wu Chun-Guey
Department of Chemistry, National Central University, Jhong-Li, 32001, Taiwan (ROC).
Optical Sciences Center, National Central University, Jhong-Li, 32001, Taiwan (ROC).
Small Methods. 2025 Sep 4:e01127. doi: 10.1002/smtd.202501127.
A new, readily accessible inorganic hole transporting material (HTM), Cu doped SnCoO (Cu-SCO), is developed for inverted tin-perovskite solar modules (TPSMs). To overcome the intrinsic defect of inorganic solid-state material Cu-SCO and potential interfacial incompatibility with TPsk, an amphiphilic neutral donor-acceptor copolymer (PTSN) is rationally designed as a surface/interface modification agent. TPSMs based on Cu doped SnCoO HTLs integrated with PTSN surface/interface modification achieved the highest conversion efficiency of 10.4%. In contrast, the conversion efficiencies of TPSMs based on Cu-SCO HTL without interface passivation or using conventional PEDOT:PSS HTL are 8.69% and 7.99%, respectively. A large-area, high-quality Cu-SCO film is fabricated using a simple and scalable sol-gel method, enabling favorable transparency and hole mobility. The amphiphilic PTSN comprises a hydrophobic iso-propyltriphenylamine (i-Pr-TPA) unit that contributes to hole transport, and a hydrophilic cyclopentadithiophene derivative bearing alkylamine side chains (CPDT-A), which assists hole extraction and transport to the Cu-SCO layer. The amine nitrogen and thiophene sulfur in PTSN can coordinate with metal ions in both TPsk and Cu-SCO, while the π-electrons from its aromatic backbone can further interact with Cu-SCO, as evidenced by IR and XPS spectroscopy. Functionally, PTSN serves as a co-HTL, interfacial cross-linker, and defect passivator for both the HTL and the perovskite absorber. Additional advantages of PTSN include its neutral character-eliminating ion migration issues-dense film formation due to the D-A copolymer structure, and strong substrate adhesion enabled by multiple anchoring groups. Moreover, its amphiphilic nature facilitates the formation of uniform, high-quality perovskite films via solution processing. This study highlights a promising strategy that combines the sol-gel process with a molecularly engineered interfacial layer, paving the way for utilizing a wide range of solution-processable inorganic HTLs in large-area tin-based perovskite photovoltaic devices with good efficiency and stability.
一种新型的、易于获取的无机空穴传输材料(HTM)——铜掺杂的锡钴氧化物(Cu-SCO),被开发用于倒置锡基钙钛矿太阳能组件(TPSM)。为了克服无机固态材料Cu-SCO的固有缺陷以及与钙钛矿可能存在的界面不相容性,一种两亲性中性供体-受体共聚物(PTSN)被合理设计为表面/界面改性剂。基于集成了PTSN表面/界面改性的铜掺杂锡钴氧化物空穴传输层(HTL)的TPSM实现了10.4%的最高转换效率。相比之下,基于未进行界面钝化的Cu-SCO HTL或使用传统的聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)HTL的TPSM的转换效率分别为8.69%和7.99%。使用简单且可扩展的溶胶-凝胶法制备了大面积、高质量的Cu-SCO薄膜,使其具有良好的透明度和空穴迁移率。两亲性PTSN包含一个有助于空穴传输的疏水性异丙基三苯胺(i-Pr-TPA)单元,以及一个带有烷基胺侧链的亲水性环戊二噻吩衍生物(CPDT-A),它有助于空穴提取并传输到Cu-SCO层。PTSN中的胺氮和噻吩硫可以与钙钛矿和Cu-SCO中的金属离子配位,同时其芳香主链中的π电子可以进一步与Cu-SCO相互作用,红外光谱和X射线光电子能谱证明了这一点。从功能上讲,PTSN充当共空穴传输层、界面交联剂以及空穴传输层和钙钛矿吸收层的缺陷钝化剂。PTSN的其他优点包括其中性特性(消除离子迁移问题)、由于供体-受体共聚物结构而形成致密薄膜,以及由多个锚定基团实现的强基板附着力。此外,其两亲性有助于通过溶液处理形成均匀、高质量的钙钛矿薄膜。这项研究突出了一种将溶胶-凝胶工艺与分子工程界面层相结合的有前景的策略,为在大面积锡基钙钛矿光伏器件中利用各种可溶液加工的无机空穴传输层实现良好的效率和稳定性铺平了道路。